International Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 3, December 2004 pp. 327—-336

Learning of Emergent Behaviors in Collective Virtual Robots
using ANN and Genetic Algorithm

Kyung-Dal Che

Dept. of Computer Science & Engineering, Chung-Ang University, Korea

Abstract

In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments,
and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both
learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept
where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to
perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural
network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance
to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are
encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group
behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in

this paper, we could have observed the robots’ emergent behaviors during simulation.

Key words : Virtual Robot System, Pursuit Domain, Artificial Neural Network(ANN), Artificial Life, Multi-robot

1. Introduction

When facing difficult problems, we can often find the
solution from creatures in nature. From this kind of attempts, a
research area of artificial life (AL) came into being by C.G.
Langton in 1987, in purpose of unifying hitherto individually
achieved research results of living creatures and further
activating those researches [1-4].

In engineering aspects, the goal of the artificial life is to
incarnate the unique behaviors or phenomena of living
creatures in nature onto artifacts like computers. We expect the
artificial life can provide a useful methodology for the virtual
robot learning which is full of autonomy and creativity. One of
basic concept of the artificial life is “emergence”. According to
its mechanism, the emergence can be divided into several
classes. Most of them determine behaviors and interaction rules
of lower-level components. The local interaction between
components generates global orders or behaviors [5-13].

The present paper develops a pursuit system that is mostly
applied to the area of robot and robot in order to apply an
emergent characteristic of the artificial life into machine
learning. The pursuit system contains robots and preys. In the
system, robots catch the preys escaping from them through
evolution. For the simulator of the system, we have modeled
the structure of the robot with the artificial neural network and
evolved the structure of the neural network with the genetic

Manuscript received Nov, 18, 2003; revised Jun. 17, 2004

algorithm. The prey is given only pre-knowledge of direction
identification to move.

Numerous researches about the autonomous mobile robot
control in the pursuit system have been studied. Nolfi and
Foreano [23] simulated pursuit system with two robots (a
predator and a prey) in real environments. They evolved both
robots reciprocally with genetic algorithm. Yasuo and Shin {15]
controlled the autonomots mobile agents using reinforcement
learning. Kam-Chuen [18] evolved the autonomous mobile
agents with the genetic algorithm. By 1I-Kwon [19], both fuzzy
controller and genetic algorithm were used. The fuzzy function
displayed agent’s position, and the genetic algorithm was used
for learning. The reinforcement learning method is to develop
agent’s behaviors by means of the interrelationship with
environment and resulting reinforcement signals. It can
guarantee learning and adaptability without precise pre-
knowledge about environments. However, its critical weak
point is the difficulty of learning when the rewards of taken
actions are not instantly computed. Takayuki and Yasuo
[14,15] have a problem in applying to the open environments
which is dynamically changing since once a agent’s role is
decided, then it is fixed. By I1-Kwon [19], both agents and prey
move randomly, and the genetic algorithm helps to prevent the
collision between agents. However, agents were not intelligent
to do learning for themselves. Also, since the gene structure
was represented by fuzzy member functions, it took much time
to resolve pursuing problerns.

Therefore, in this paper, to resolve those problems, we apply
the artificial life method in our system. We model the robot

327

International Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 3, December 2004

structure with the artificial neural network that is easy to model
both robots and use the genetic algorithm for robot learning,
which results in giving intelligence to robots in their pursuing
movement toward the prey. The prey has only pre-knowledge
to identify distance to avoid the robots. We have designed a
virtual environment where 20 robots and a prey. Furthermore,
various selection methods of the genetic algorithm are
considered for simulation.

The rest of this paper is organized as follows. In chapter 2,
the related works of this paper and is described. Chapter 3
describes the evolution of virtual robot in pursuit system. In
chapter 4, simulation and evaluation are described. Finally,
conclusion is presented in chapter 5.

2. Related works

2.1 Genetic Algorithm

A genetic algorithm (GA) is a method to obtain an optimal
solution by applying a theory of biological evolution [21,22].
GAs generally consist of three fundamental operators:
reproduction, crossover and mutation. Given an optimization
problem, simple GAs encode the concerned parameters into
finite bit strings, and then run iteratively using the three
operators in a random way but based on the fitness function
evolution to perform the basic tasks of copying strings,
exchanging portions of strings as well as changing some bits of
string, and finally find and decode the solutions to the
processing of a GA. The following paragraphs explains the
details:

(1) Coding the parameters

It has become a common way to translate the parameters into
binary bit strings, Several parameters are coded into one long
string.

(2) Initial generation.

It always begins by randomly generating an initial
population of N strings which length is m bits. The population
size N is a compromising factor. Large N increases the
possibility of including the solution in the first few generations,
but decreases the running speed of the GAs mentioned above.
The string length m determines the resolution. It has long been
recognized that because genetic algorithms perform a global
search of a solution space, the encoded bit string lengths should
be kept as short as possible, since the size of the search space
increases exponentially with string size.

(3) Fitness evaluation

In the current generation, each of the strings is decoded into
its corresponding actual parameter, Then, these parameters are
sent to a judgment machine which yields a measure of the
solution’s quality, evaluates with some objective functions and
then assigns individually with fitness values.

328

(4) Reproduction

Reproduction is a process by which the strings with larger
accordingly with higher
probabilities, large number of their copies in the new

fitness values can produce,

generation.

(5) Crossover

Crossover is a process by which the systematic information
exchange between two strings is implemented using
probabilistic decisions. In a crossover process, two newly
reproduced strings are chosen from the mating pool and
arranged to exchange their corresponding portions of binary
strings at a randomly selected partitioning position along them.
This process can combine better qualities among the preferred

good strings.

(6) Mutation

Mutation is a process by which the chance for the GA to
reach the optimal point is reinforced through just an occasional
alteration of a value at a randomly selected bit position. The
mutation process may quickly generate those strings which
might not be conveniently produced by the previous
reproduction and crossover processes. Mutation may suddenly
spoil the opportunity of the current appropriate generation, so,
this process usually occurs with a small probability and is
complementary to reproduction and crossover.

(7) Iteration

The GA runs iteratively repeating the process (3)-(7) until it
arrives at a predetermined ending condition. The speed of
iteration depends on not only the population size N and the
string length m but also the selection of probabilities. Finally,
the acceptable solution is obtained and decoded into its original
pattern from the resulting binary strings.

2.2 Multi~robot System

Multi-robot systems differ from single-robot systems in that
several robots exist which model each other’s goals and actions.
In the fully general multi-robot scenario, there may be direct
interaction among robots. From an individual robot’s
perspective multi-robot systems differ from single-robot
systems most significantly in that the environment’s dynamics
can be affected by other robots. In addition to the uncertainty
that may be inherent in the domain, other robots intentionally
affect the environment in unpredictable ways. Thus, all multi-
robot systems can be viewed as having dynamic environments
[24, 25].

In the pursuit domain, communication creates new
possibilities for predator behavior. Since the prey acts on its
own in the pursuit domain, it has no other robots with which to
communicate. However the predators can freely exchange

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

information in order to help them capture the prey more
effectively. The current situation is illustrated in Figure 1.
When using a “distributed” strategy, the robots are still
homogeneous, but they communicate to insure that each moves
toward a different capture position. In particular, the predator
farthest from the prey chooses the capture position closest to it,
and announces that it will approach that position. Then the next
farthest predator chooses the closest capture position from the
remaining three, and so on. This simple protocol encourages
the predators to close in on the prey from different sides. A
distributed strategy, it is much more effective than the local
policy and does not require very much communication.

Agent

Agent

Pre

-8

Figure 1. The pursuit domain with
homogeneous communication robots

2.3. Artificial Neural Network(ANN)

The artificial neural network is consisted of many units that
represent neurons. Each unit is a basic unit of information
process. Units are interconnected via links that contain weight
values. Weight values help the neural network to express
knowledge. The neural network is divided into three layers:
input layer, hidden layer, and output layer. The input layer
transfers input signals into the hidden layer or the output layer.
The hidden layer transfers signals from the input layer into the
output layer. The output layer outputs transferred signals. Units
can be regarded as nodes consisting of the neural network. One
node can receive signals from other nodes and transfer specific
signal into other nodes. The transfer rules can be described as
next [12].

Step 1) All input signals and corresponding weight values are
summed.

g(x)=>, x; ® w; (X; : input signal, w; : weight value)
Step 2) Output value is computed by using activation function.

y=g(x) (y: output signal, g(x): activation function)

3.Emergent behavicr implementation of virtual
robots

3.1 Virtual environment and the structure of the system
Virtual environment of the pursuit system is a 10 by 10
lattice where up-and-down and right-and-left are connected
each other as shown and robots and preys co-exist, as shown in
Figure 2. Accordingly, if an robot or a prey move continuously
toward one direction, it comes back to its origin. One any spot,
there exists only one robot or one prey. In this paper, the prey is
given the pre-knowledge that can identify and avoid robots in 4
directions. If it cannot move any more, it can stay on a spot.

B

T B |

= e |
=D
&
b=
e =D pD

z 3

Figure 2. A lattice environment

The structure of whole system is described in Figure 3.

Sensing

™ (lenetic

Algorithm
+

{4

Action

Figure 3. Structure of the pursuit system

329

International Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 3, December 2004

An robot can contain several sensory organs. It perceives
limited environments with those organs and behaves. In figure
3, at sensing, the input data of the positions of the robot input.
The second stage constructs the learning structure of robot the
artificial neural network. In simulation, 32 nodes are used: 8
nodes for prey identification, 8 nodes for robot identification,
and 16 nodes that are exactly duplicated from the nodes of
robot. All nodes are connected in parallel. Thus, this paper can
apply a learning algorithm with parallel search structure. From
the input nodes, the nodes in the medium layer use weight
values that are transmitted to the output layer to generate
robot’s behaviors. Output layer consists of 5 nodes. The neural
network makes the learning of weight values in the medium
layer. In addition, the genetic algorithm makes the learning of
the structure of the neural network. The learning results
generate the robot’s behaviors in the action stage where there
exist 5 actions: catching prey and movements of left, right, up,
and down.

3.2 Robot’s structure

Any robot can identify the existence of other robots or preys
within a defined distance, and its behavior is to catch and
encircle a prey or to move by | toward 4 directions. Each robot
contains several sensory organs, and its behavior uses those
organs.

Figure 4 briefly describes the processes of an robot’s
identifying and behaving with the environments within a
limited distance with its sensory organs.

Robot

CHEEPOL Prey
1] ~. Moving
BEOED | B direction
-D Identification
distance

Figure 4. Identification distance and moving direction of
artificial organisms. Both robot and prey can identify distance
by 2 spaces and move one space at a time.

3.3 Genetic information

A robot possesses its genetic information that is used to
construct a neural network. The neural network determines
each robot’s behaviors. The input nodes of the neural network
are connected to sensory organs so that they receive inputs
from robot’s environments. The output nodes output signals
that can activate or inhibit specific behaviors. We assume that
the genetic information is made up of binary string, and its

330

length is fixed. Shown in Figure 5, the genetic information is
interpreted and utilized to construct a neural network that
generates unique behavior patterns.

Genetic String : 11000010001110101010101011.....

Decoade

O©— ()
Neural M—_‘
Network é%‘b
— & o—

Hidden layer

Input layer Qutput layer

Figure 5. Construction of a neural network from genetic
information

Figure 5 displays the neural network consisting of 32 input
units, 21hidden units, and 5 output units. In simulation, the
neural network contains 32 input units. Among them, 8 nodes
are utilized for the robot to check the position of robots within
2 spaces of left, right, up, and bottom. Another 8 nodes are
utilized for robot to check the position of the prey within 2
spaces of left, right, up, and bottom. The distributed genetic
algorithm where each robot exchanges genes through
communication can improve the robot’s capability from
superior genes learned in different environments. Before their
moving, robots repeat 1) inputting sensor values to the neural
network, 2) computing output values, and 3) behaving the
action corresponding to the maximum output value.

The construction of a neural network with binary string uses
work [12]. One
connection descriptor connects one node to another node. To

connection descriptors as in Collins
represent one connection descriptor needs three fields;

1) From-Field: represent the number of unit (node) to receive
initial stimuli

2) To-Field: represent the number of node to transfer the
stimuli

3) Weight-Field: represent how much the stimuli can be
amplified or inhibited.

We assume the structure of a connection descriptor as in
Table 1.

<Table 1> The structure of a connection descriptor

From-Field To-Field Weight-Field

7bits 7bits 6bits

In <Table 1>, from-field and to-field are represented by 7
bits that can express 128 nodes. The weight field can be

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

represented by 6 bits. The first bit is the sign bit. If gene
information bits become longer, the complexity increases.
Proper size of weight bits is required to save operation time and
memory.

When a genetic string has next values, each field of the first
connection descriptor can be expressed as:

Genetic string: 0000000 0000001 10001.......

From-Field: 0000000 (indicate unit 0)
To-Field: 0000001 (indicate unit 1)
Weight: 100001 (indicate connection weight -1).

Figure 6 describes the connection between units.

Figure 6. Connection between nodes

If the length of a genetic string is n, the length of a
connection descriptor is m, n/m number of connections can be
described between units.

Table 2 describes an algorithm generating the structure of the
neural network from the input of gene information.

<Table 2> Neural network structure generation algorithm

neural _network construct(chromosome)
from _length=7;

to_length—7;

weight_length -6;

matrix{*]{*] - 0;

Jor each descriptor in chromosome do
from=:from_ f{chromosome);
to=to_f{chromosome);
weight=weight_f{chromosome);
matrix{from]fto]+- weight;

endfor

return(matrix);

3.4 Emergent behavior evolution strategy

In simulation, we consider total and tournament competition
methods to know of the evolution for emergent behaviors. The
total competition method runs all kind of robots consisting of
their specific generations during a fixed time interval and
generates offsprings as next generation according to the
proportion to accumulated fitness values. As operators to

generate next generation robots, reproduction, crossover, and
mutation are used. The algorithm of total competition to
generate next generation robots is described next.

<Total competition algorithm>

Step 1) Run all robot classes during a fixed time interval.

Step 2) Select some classes survivable in next generation
according to the proportion to fitness values.

T
F=Z fim+£ @
t=0
where, T= life time
fi'={1 if ith robot is adjacent (up, down, right, and lefi) to the
prey, 0 otherwise. },
f'={1 if ith robot is in ‘catch’ action with other robots, 0
otherwise}
‘catch’ denotes the stote where robots are encircling the
prey.

Step 3) Reproduce or crossover selected classes.
Step 4) Mutate newly generated classes.

Tournament competition method constructs 4 groups where
each group consists of 4 robots from current generation, selects
one superior robot from each group in the first two groups, and
selects one inferior robot from each group in the rest two
groups. Then, subsist the selected two superior robots (via
reproduction, crossover, or mutation) and exterminates the
selected two inferior robots. The tournament competition
method, where parents and offsprings co-exist in one
generation, is a kind of steady-state algorithm, and its feature is
the competition of robots in only a small group. The algorithm
to generate next generation in the tournament competition
method is described as fol.ow.

<Tournament competition algorithm>

1) Randomly select 4 groups where each group consists of 4
robots.

2) Select two groups, run during the fixed time interval, and
select one superior robot from each group.

3) Select the rest of two, run during the fixed time interval, and
delete one inferior robst from each group.

4) Reproduce or crossover those superior elements and
generate their off-springs.

5) Mutate newly-generated robots.

Figure 7 describes the tournament competition method.

331

International Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 3, December 2004

superior genetic selection

D
superior genetic selection
inferior genetic selection
inferior genetic selection removal
@

selection

reproduction

Figure 7. Tournament competition method

This paper simulates as considering 3 methods for the
tournament competition method: 1) random selection, 2) linear
area selection, and 3) 2-D area selection. Random selection
selects randomly some classes from the general group. Linear
area selection is to select robots adjacent to a specified range in
a robot group arranged in one-dimension. 2-D selection is to
select robot adjacent to a specified surrounding in 2-dimension
space. Figure 8 describes the tournament competition method,
and the white colored robots can be selected as same
tournament group.

<Table 3> Simulation parameters

o Number of specified classes of robots :20

* Range of robot sensor : up-and-down or right-and-left by 2 from its
location

o Number of prey : 1 (always escape from robots in 4 directions)

o Escape strategy of prey : Move into the position where escaping
robots as much as possible from current location or when moving to
up-and-down or right-and-left by 1

o Value reward of robot : Get one point when the robot is adjacent to
prey, and get one point when the adjacent robot acts ‘EAT’

® Activity time : 20 (robot acts 20 times)

o Crossover rate : 0.6 (the rate that the selected two can be crossover)

e Mutation rate : 0.03 (the rate that the least unit of genetic
information can be mutated)

¢ Maximum number of input unit at the neural network : 32

* Maximum number of hidden unit at neural network :21

» Maximum number of output unit at the neural network : 5

e Environment : 10X10 lattice (connected to up-and-down and right-
and-left)

linear area selection

2D area selection

=

Figure 8. Linear, 2D area selection method
4. Simulation and evaluation

4.1 Simulation

This chapter describes emergent behaviors of autonomous
mobile robots in pursuit system. The parameters used for
simulation are described in Table 3.

The prey is given a primitive priority in moving directions as
left, right, up, and down with decreasing order of priority.
Since robots are prey are supposed to be placed on different
spots (one on one) on the lattice, there will not occur any
collision among them. Each robot continuously evolves during
its life time (20 movements), regardless of whether the prey is
caught or not.

332

The general simulation procedure of the pursuit system is
described as below.

<Step 1> Initialize all genetic information of the gene pool.
<Step 2> Interpret all kinds of genetic information, construct
neural network, initialize
environments (position the prey and robots
on the lattice), and construct N of robot
brains.
<Step 3> Move N robots during fixed time. Robots can obtain
fitness values according to proper actions.
<Step 4> When run time is completed, the fitness values of the
corresponding class are cumulated based on each
robot’s fitness values.
<Step 5> The fitness values of all robots are obtained through
<Step 2-4>.
<Step 6> With the rate proportional to the fitness values, gene
classes are selected, and next generation robots are
re-produced by crossover and mutation.
<Step 7> Go to Step 2.

In simulation, the paper assigned different rates of mutation
and crossover operators of genetic algorithm and applied to
different competition methods. Figure 9 represents the
evaluation of different mutation rates (0, 0.03, and 0.07) when
crossover rate is fixed to 0.6. On the contrary, figure 10
represents the evaluation of different crossover rates (0.3, 0.6,
and 0.8) when the mutation rate is fixed to 0.03. For the
efficiency at the total competition method, we force one of the
selected superior robots to be reproduced in the next generation.
For the tournament competition method, we simulate with three

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

selection methods of random selection, linear area selection,
and 2-D area selection. In figure 9 and 10, the horizontal axis
represents the number of generation, and the vertical axis
represents the average number of caught prey. In figure 9, 2D-
AVR plot represents the average number of caught prey using
2-dimension area selection method. TOR-AVR plot implies the
use of the random selection method. LNR-AVR plot implies
the use of linear area selection method.

Next is the evaluation about crossover rate. Figure 10
showed the simulation results of 2-D area selection method. It
showed the crossover rate was not proportionally related to the
performance. Properly ctosen crossover rate may result in good
performance. Fundamentally, the manipulation of various
variables follows the gereral features of genetic algorithms. In
the pursuit system domain, the variables of genetic algorithm
didn’t differentiate the general features, since this paper used
the mutation and crossover operators.

(c) mutation rate: 0.07, crossover rate: 0.6
Figure. 9 Simulation results of mutation rate

Figure 9 (a) plots when no mutation occurred. As shown in
figure 9 (a), without mutation, the catching prey was performed
well. When the mutation rate was given 0.03, the performance
was better than others. The mutation much affected on the
initial stage. After medium stage, it doesn’t seem to affect on
the performance.

60
[
=t
2 ——2D-AVR 3 50
ke) - TOR-AVR g —+—2D-0.3
:‘;‘; ~— LNR-AVR 2 40 ~ii-- 2D-0.6
o % ——2D-0.8
< 30
o g Generation 20 O O ® O &SSP & Generation
S E S \\QQ \%Qo \@Q \«QQ \%60
(a) mutation rate:0, crossover rate: 0.6 - -
Figure 10. Results of crossover rate (mutation rate: 0.03)
70 [——
Table 4 describes simulation results of each selection method
E in tournament competition method with crossover rate of 0.6
= —*—2D-AVR and mutation rate of 0.03.
2 -+~ TOR-AVR
% ~#— LNR-AVR
T Table 4. Simulation results of tournament competition method
. ewerd valuel Reward value| Reward value
Generation; e‘
Generation (cp=0.6) | (mp=0.03) |(cp=0.6mp=0.03)
2D area
. 20000 37 43 48
selection
(b) mutation rate: 0.03, crossover rate 0.6 Linear area
. 20000 48 53 52
selection
Random
. 20000 52 46 45
selection
g
g —e— 2D-AVR
g —#—~TOR-AVR We simulated 20,000 times of generation and averaged 50
—— LNR-AVR
ggg times of simulations for each selection method. Among the
three selection methods, the linear area selection method
displayed slightly better results. However, most simulation
5 F 5 Generation results didn’t show big dif’erences.
Figure 11 represents the evaluation of competition methods
using 0.6 of crossover rate and 0.03 of mutation rate.

4.2 Evaluation

Simulation results represented that the tournament
competition method showed better evolution and excellent
emergent behavior results than the total competition method
did. The reason was that .n the total competition method, the
whole gene pool needed "o be considered, which resulted in

decreasing processing speed. On the contrary, in the

333

international Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 3, December 2004

tournament competition method, small numbers of robots were
selected for the next generation. Thus, the tournament
competition method could be very effective evolution method
in emergent behavior evolution of autonomous robots that were
similar to living creatures in nature. To improve the evolution
speed at the total competition method, heuristics that can
distinguish intelligent behavior patterns ought to be added into
adaptation function. However, we could find that there was a
limit in the evolution. Such adaptation function could not be
regarded as an artificial life approach since it could be pre-
defined by system designers.

70
60
2
3 50 —+—2D-AVR
> 40 5~ TOR-AVR
] ~—a— LNR-AVR
5 30 —>—RAN-AVR_
¢
20
10
S O & & & & & & & & .
S N N S O L & &S
O R P S SN DI S S Generation

Figure 11. Reward value in each generation

In addition, we could observe that robots’ behavior patterns
were divided into three stages. In the first stage, robots were the
least intelligent and didn’t intend to approach or to catch (or
encircle) the prey. In the second stage, robots were somewhat
intelligent. Robots could catch the prey in front of themselves
or move toward to the direction of the prey. However, robots
often fell into the infinite-loop so that they could not catch
preys continuously (This stage appeared only in global
competition method.). In the third stage, robots were most
intelligent. Robots never fell into the infinite-loop. Our
simulation results have been obtained based on the third stage.

Figure 12 illustrates sequentially the evolution process of
robot’s behavior with the simulation of 2-D area selection
method. The circles denote the robots, and the rectangular
denotes the prey.

In figure 12, the term “time 11” denotes the status that both
all robots and the prey moved 11 times after environments were
initialized. Through Time 10 to 14, the prey is encircled (i.e.
caught) by the robots. However, after then, the robots still
keeps on evolving during the given life time. At Time 20, the
state of ‘catch’ is temporarily broken, which may occur due to
the evolution of robots. At Time 21, the prey is re-encircled by
the robots, and no more break-down has occurred. Thus, the
Time 22 is called the optimal state at the viewpoint of the
robots to obtain the reward values continuously.

334

Time; 14 Time: 20

Figure 12. Process of robot’s behavior evolution

Time;21

Time;22

In the present paper, we could have observed the
communication and cooperation between robots. Without the
communication and cooperation, robots cannot catch the prey
continuously. For example, as shown in Time 20 of Figure 12,
the prey can find an escape passage to the bottom, but with the
communication and cooperation of another robot at the next
time, the prey can be caught continuously. Thus we can define
the communication and cooperation as to identify the location
among robots and behave proper actions to catch the prey.
More simply, we consider the communication as the
positioning between robots. We further consider the
cooperation as a method to resolve problems in parallel. These
characteristics are advantageous to stably accomplish common
goal, as applied to replace with another when a specific robot
becomes defected.

5. Conclusion

This paper merges the artificial life method in emergent
behavior evolution of virtual robot as modeling the pursuit
system with the artificial neural network and genetic algorithm.
In doing so, in virtual environments, we construct a neural
network representing robot and prey and propose a model to
evolve its structure. Also, we have compared evolution
strategies of several selection methods varying the crossover
and mutation rates in simulation and investigated the variation
of behavior during the evolution process. As a result, the
tournament competition method has showed higher realization
of robot’s emergent behavior than others. Furthermore, we
have observed that even in a virtual environment, intelligent
behavior patterns can be emergent for a living creature to exist
through evolution. The robot’s evolution similar to this kind of
creature has a merit in that no human being’s help is needed.

Compare to the reinforcement learning method where the
reward of robots’ behaviors is not instantly computed, this
paper has not shown this kind of problem. The genetic
algorithm method showed that robots could face some
limitation to solve problems, or robots’ roles were not dynamic
even when each robot was needed to communicate and share its

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

capability and knowledge with others. That is, the genetic
algorithm method is not proper to be applied to the open
environments. In this paper, we can observe the communication
and cooperation between robots for a common goal. To express
the evolution of robots conveniently, we have merged with
artificial neural network. Fuzzy function method reveals a
time consuming problem since the gene structure is expressed
with the fuzzy membership functions. However, this paper
doesn’t need either fuzzification or defuzzification, which
results in reducing time consumption. Therefore, this paper
concludes the usefulness of the emergent behavior evolution.

For future works, further research is needed to see if the
proposed method in this paper can be applied into more various
and complicated application areas in real world.

References

[1] Floreano, D.,Evolutionary Agentics in Artificial Life and
Behavior Engineering. In T. Gomi (ed.), Evolutionary
Agentics 11, Ontario (Canada): AAI Books, 1998.

[2] Gomez, F., & Miikkulainem, R., “Incremental evolution of
complex general behavior”, Adaptive Behavior, 5, pp. 317-
342, 1997.

[3] Floreano, D., Nolfi, S. and Mondada, F. (2001) Co-
Evolution and Ontogenetic Change in Competing Agents.
In M. Patel, V. Honavar, and K. Balakrishnan (eds.),
Advances in the Evolutionary Synthesis of Intelligent
Agents, Cambridge (MA): MIT Press.

[4] Brooks and Maes ed., Artificial Life , MIT Press, 1994.

[5] A. Asama et. Al. eds, Distributed Autonomous Agentic
Systems I, II, Springer-Verlag, 1994.

[6] D. W. Lee, K. B. Sim, “Behavior Learning and Evolution of
Collective Autonomous Mobile Agents using Distributed
Genetic Algorithms,” Proc. of 2nd AScian Control
Conference, Vol.2, pp.575-678, 1997.7.

[7] D.W. Lee, K.B. Sim, “Development of Communication
System for Collective

Cooperative Behavior in

Autonomous Mobile Agents,”, Proc. of 2nd AScian
Control Conference, Vol.2, pp.615-618, 1997.7.

[8] D.W. Lee, H. B. Jun, and K.B. Sim, “Artificial Immune
System for Realization of Cooperative Strategies and
Group Behavior in Collective Autonomous Mobile
Agents,”, Proc. of Fourth Int'l Symp. On Artificial Life
and Agentics, pp.232-235, 1999.

[9] K.B Sim, “Realixation of Intelligent agent system Based
on Artificial Life”, Jowrnal of Korean Electronics, Vol.24,
No.3, pp. 70-82, 1997. 3.

[10] Lisa, MJ. Hogg and Nichola R. Jennings, “Socially
Intelligent Reasoning for Autonomous Agents”, [EEE

Trans. On Systems, Man, and Cybernetics-Part A: Systems
and Humans, Vol.31, No.5, pp. 381-393, September, 2001.

[11] Marco Dorigo, Vittcrio Maniezzo, and Alberto Colorni,
“Ant System: Optimization by a Colony of Cooperating
Agents”, IEEE Trans. On Systems, Man, and Cybernetics-
Part B: Cybernetics, Vol.26, No.l, pp. 29-41, February,
1996.

[12] Collins, Robert J. and David R, “An artificial Neural
network representazion for artificial organisms”,
Proceedings of the First workshop on Parallel Problem
Solving, Number 496, In Lecture Notes in Computer
Science, pp. 259-263, Springer-Verlag, 1992.

[13] Victor R. Lesser, “Cooperative Multiagent systems: A
personal view of the state of the art”, IEEE Transactions
on knowledge data engineering, Vol.11, No. 1, pp.133-
142.1999.

[14] Takayuki Kohri and Matsubayashi , “An Adaptive
Architecture for Modular Q-Learning”, In Proceedings of
the 10th International Confernece on Simulation of
Adaptive Behavior, MIT Press, pp.1-6, 2000.

[15] Yasuo Nagayuki, Shin Ishii, “Multi-Agent Reinforcement
Learning: An Apprcach Based on the Other Agent’s
Internal Model”, From Animals to Animates:Proceedings
of the 8thConfernece on the Simulation of Adaptive
Behavior, MIT Press , pp.478-485, 1999.

[16] H. Asama et al., Distributed Autonomous Agentic Systems,
Springer- Verlag, 1994,

[17] H. Asama et al., Distributed Autonomous Agentic Systems
2, Springer-Verlag, 1996.

[18] Kam-Chuen Jim, C.Lee Giles, “Talkin Helps: Evolving
Communicating Agents for the Predator-Prey Pursuit
Problem”, Artificial Life 6, pp. 237-254, 2000.

[19] II-Kwon Jeong and Ju-Jang Lee, “Evolving Fuzzy Logic
Controllers for Multiple Mobile Agents Solving a
Continuous Pursuit Problem”, IEEE International Fuzzy
Systems Conference Froceedings, pp.685-689, 1999.

[20] Carlos Andres Penz-Reyes and Moshe Sipper, “Fuzzy
CoCo: A Cooperative Co-evolutionary Approach to Fuzzy
Modeling”, IEEE Trons. On Fuzzy Systems, Vol.9, No.5,
pp-727-737, October, 2001.

[21] Genetic Programrm.ing On the Programming of
Computers by Means of Natural Selection, MIT Press,
1992.

[221 D.E. Goldberg,
Optimization, and
Wesley, 1989.

[23] Nolfi, S. and Floreano, D. ,”Co-evolving predator and prey

Genetic Algorithms
Machine Learning,

in Search,
Addison

agents: Do 'arm races' arise in artificial evolution?”,
Artificial Life, 4(4), 311-335,1998.

335

International Journal of Fuzzy Logic and Intelligent Systems, vol. 4, no. 3, December 2004

[24] Peter Stone and Manuela Veloso,”Multiagent Systems: A
survey from a Machine Learning Perspective”,
Autonomous Robots, 8, 345-383, 2000.

[25] Haynes, T. and Sen, S., “Learning cases to resolve
conflicts and improve group behavior”, International
Journal of Human Computer Studies, 48, pp. 31-49, 1998.

336

Kyung-Dal Cho received his B.S. degree in
Computer Science from Kyonggi
University, Kyonggi, Korea, in 1990.

He received the M.S and Ph. D. degree in
Computer Science and Engineering from
Chung-Ang University, Seoul, Korea, in
1992 and 2004, respectively. His research interests include
Fuzzy System, Artificial Life, Machine Learning, Artificial
Neural networks.

E-mail : kdcho88@daum.net

