• Title/Summary/Keyword: video object extraction

Search Result 111, Processing Time 0.033 seconds

A block-based face detection algorithm for the efficient video coding of a videophone (효율적인 화상회의 동영상 압축을 위한 블록기반 얼굴 검출 방식)

  • Kim, Ki-Ju;Bang, Kyoung-Gu;Moon, Jeong-Mee;Kim, Jae-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.9C
    • /
    • pp.1258-1268
    • /
    • 2004
  • We propose a new fast, algorithm which is used for detecting frontal face in the frequency domain based on human skin-color using OCT coefficient of dynamic image compression and skin color information. The region where each pixel has a value of skin-color were extracted from U and V value based on DCT coefficient obtained in the process of Image compression using skin-color map in the Y, U, V color space A morphological filter and labeling method are used to eliminate noise in the resulting image We propose the algorithm to detect fastly human face that estimate the directional feature and variance of luminance block of human skin-color Then Extraction of face was completed adaptively on both background have the object analogous to skin-color and background is simple in the proposed algorithm The performance of face detection algorithm is illustrated by some simulation results earned out on various races We confined that a success rate of 94 % was achieved from the experimental results.

Motion Parameter Estimation and Segmentation with Probabilistic Clustering (활률적 클러스터링에 의한 움직임 파라미터 추정과 세그맨테이션)

  • 정차근
    • Journal of Broadcast Engineering
    • /
    • v.3 no.1
    • /
    • pp.50-60
    • /
    • 1998
  • This paper addresses a problem of extraction of parameteric motion estimation and structural motion segmentation for compact image sequence representation and object-based generic video coding. In order to extract meaningful motion structure from image sequences, a direct parameteric motion estimation based on a pre-segmentation is proposed. The pre-segmentation which considers the motion of the moving objects is canied out based on probabilistic clustering with mixture models using optical flow and image intensities. Parametric motion segmentation can be obtained by iterated estimation of motion model parameters and region reassignment according to a criterion using Gauss-Newton iterative optimization algorithm. The efficiency of the proposed methoo is verified with computer simulation using elF real image sequences.

  • PDF

Feature-based Object Tracking using an Active Camera (능동카메라를 이용한 특징기반의 물체추적)

  • 정영기;호요성
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.694-701
    • /
    • 2004
  • In this paper, we proposed a feature-based tracking system that traces moving objects with a pan-tilt camera after separating the global motion of an active camera and the local motion of moving objects. The tracking system traces only the local motion of the comer features in the foreground objects by finding the block motions between two consecutive frames using a block-based motion estimation and eliminating the global motion from the block motions. For the robust estimation of the camera motion using only the background motion, we suggest a dominant motion extraction to classify the background motions from the block motions. We also propose an efficient clustering algorithm based on the attributes of motion trajectories of corner features to remove the motions of noise objects from the separated local motion. The proposed tracking system has demonstrated good performance for several test video sequences.

Real-Time Foreground and Facility Extraction with Deep Learning-based Object Detection Results under Static Camera-based Video Monitoring (고정 카메라 기반 비디오 모니터링 환경에서 딥러닝 객체 탐지기 결과를 활용한 실시간 전경 및 시설물 추출)

  • Lee, Nayeon;Son, Seungwook;Yu, Seunghyun;Chung, Yongwha;Park, Daihee
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.711-714
    • /
    • 2021
  • 고정 카메라 환경에서 전경과 배경 간 픽셀값의 차를 이용하여 전경을 추출하기 위해서는 정확한 배경 영상이 필요하다. 또한, 프레임마다 변화하는 실제 배경과 맞추기 위해 배경 영상을 지속해서 갱신할 필요가 있다. 본 논문에서는 정확한 배경 영상을 생성하기 위해 실시간 처리가 가능한 딥러닝 기반 객체 탐지기의 결과를 입력받아 영상 처리에 활용함으로써 배경을 생성 및 지속적으로 갱신하고, 획득한 배경 정보를 이용해 전경을 추출하는 방법을 제안한다. 먼저, 고정 카메라에서 획득되는 비디오 데이터에 딥러닝 기반 객체 탐지기를 적용한 박스 단위 객체 탐지 결과를 지속적으로 입력받아 픽셀 단위의 배경 영상을 갱신하고 개선된 배경 영상을 도출한다. 이후, 획득한 배경 영상을 이용하여 더 정확한 전경 영상을 획득한다. 또한, 본 논문에서는 시설물에 가려진 객체를 더 정확히 탐지하기 위해서 전경 영상을 이용하여 시설물 영상을 추출하는 방법을 제안한다. 실제 돈사에 설치된 카메라로 부터 획득된 12시간 분량의 비디오를 이용하여 실험한 결과, 제안 방법을 이용한 전경과 시설물 추출이 효과적임을 확인하였다.

Background Subtraction Algorithm Based on Multiple Interval Pixel Sampling (다중 구간 샘플링에 기반한 배경제거 알고리즘)

  • Lee, Dongeun;Choi, Young Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.27-34
    • /
    • 2013
  • Background subtraction is one of the key techniques for automatic video content analysis, especially in the tasks of visual detection and tracking of moving object. In this paper, we present a new sample-based technique for background extraction that provides background image as well as background model. To handle both high-frequency and low-frequency events at the same time, multiple interval background models are adopted. The main innovation concerns the use of a confidence factor to select the best model from the multiple interval background models. To our knowledge, it is the first time that a confidence factor is used for merging several background models in the field of background extraction. Experimental results revealed that our approach based on multiple interval sampling works well in complicated situations containing various speed moving objects with environmental changes.

Gait Recognition Using Multiple Feature detection (다중 특징점 검출을 이용한 보행인식)

  • Cho, Woon;Kim, Dong-Hyeon;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.84-92
    • /
    • 2007
  • The gait recognition is presented for human identification from a sequence of noisy silhouettes segmented from video by capturing at a distance. The proposed gait recognition algorithm gives better performance than the baseline algorithm because of segmentation of the object by using multiple modules; i) motion detection, ii) object region detection, iii) head detection, and iv) active shape models, which solve the baseline algorithm#s problems to make background, to remove shadow, and to be better recognition rates. For the experiment, we used the HumanID Gait Challenge data set, which is the largest gait benchmarking data set with 122 objects, For realistic simulation we use various values for the following parameters; i) viewpoint, ii) shoe, iii) surface, iv) carrying condition, and v) time.

A Method for Recovering Text Regions in Video using Extended Block Matching and Region Compensation (확장적 블록 정합 방법과 영역 보상법을 이용한 비디오 문자 영역 복원 방법)

  • 전병태;배영래
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.767-774
    • /
    • 2002
  • Conventional research on image restoration has focused on restoring degraded images resulting from image formation, storage and communication, mainly in the signal processing field. Related research on recovering original image information of caption regions includes a method using BMA(block matching algorithm). The method has problem with frequent incorrect matching and propagating the errors by incorrect matching. Moreover, it is impossible to recover the frames between two scene changes when scene changes occur more than twice. In this paper, we propose a method for recovering original images using EBMA(Extended Block Matching Algorithm) and a region compensation method. To use it in original image recovery, the method extracts a priori knowledge such as information about scene changes, camera motion and caption regions. The method decides the direction of recovery using the extracted caption information(the start and end frames of a caption) and scene change information. According to the direction of recovery, the recovery is performed in units of character components using EBMA and the region compensation method. Experimental results show that EBMA results in good recovery regardless of the speed of moving object and complexity of background in video. The region compensation method recovered original images successfully, when there is no information about the original image to refer to.

Development of CCTV Cooperation Tracking System for Real-Time Crime Monitoring (실시간 범죄 모니터링을 위한 CCTV 협업 추적시스템 개발 연구)

  • Choi, Woo-Chul;Na, Joon-Yeop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.546-554
    • /
    • 2019
  • Typically, closed-circuit television (CCTV) monitoring is mainly used for post-processes (i.e. to provide evidence after an incident has occurred), but by using a streaming video feed, machine-based learning, and advanced image recognition techniques, current technology can be extended to respond to crimes or reports of missing persons in real time. The multi-CCTV cooperation technique developed in this study is a program model that delivers similarity information about a suspect (or moving object) extracted via CCTV at one location and sent to a monitoring agent to track the selected suspect or object when he, she, or it moves out of range to another CCTV camera. To improve the operating efficiency of local government CCTV control centers, we describe here the partial automation of a CCTV control system that currently relies upon monitoring by human agents. We envisage an integrated crime prevention service, which incorporates the cooperative CCTV network suggested in this study and that can easily be experienced by citizens in ways such as determining a precise individual location in real time and providing a crime prevention service linked to smartphones and/or crime prevention/safety information.

2D-to-3D Stereoscopic conversion: Depth estimation in monoscopic soccer videos (단일 시점 축구 비디오의 3차원 영상 변환을 위한 깊이지도 생성 방법)

  • Ko, Jae-Seung;Kim, Young-Woo;Jung, Young-Ju;Kim, Chang-Ick
    • Journal of Broadcast Engineering
    • /
    • v.13 no.4
    • /
    • pp.427-439
    • /
    • 2008
  • This paper proposes a novel method to convert monoscopic soccer videos to stereoscopic videos. Through the soccer video analysis process, we detect shot boundaries and classify soccer frames into long shot or non-long shot. In the long shot case, the depth mapis generated relying on the size of the extracted ground region. For the non-long shot case, the shot is further partitioned into three types by considering the number of ground blocks and skin blocks which is obtained by a simple skin-color detection method. Then three different depth assignment methods are applied to each non-long shot types: 1) Depth estimation by object region extraction, 2) Foreground estimation by using the skin block and depth value computation by Gaussian function, and 3)the depth map generation for shots not containing the skin blocks. This depth assignment is followed by stereoscopic image generation. Subjective evaluation comparing generated depth maps and corresponding stereoscopic images indicate that the proposed algorithm can yield the sense of depth from a single view images.

Development of a Web-based Presentation Attitude Correction Program Centered on Analyzing Facial Features of Videos through Coordinate Calculation (좌표계산을 통해 동영상의 안면 특징점 분석을 중심으로 한 웹 기반 발표 태도 교정 프로그램 개발)

  • Kwon, Kihyeon;An, Suho;Park, Chan Jung
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.10-21
    • /
    • 2022
  • In order to improve formal presentation attitudes such as presentation of job interviews and presentation of project results at the company, there are few automated methods other than observation by colleagues or professors. In previous studies, it was reported that the speaker's stable speech and gaze processing affect the delivery power in the presentation. Also, there are studies that show that proper feedback on one's presentation has the effect of increasing the presenter's ability to present. In this paper, considering the positive aspects of correction, we developed a program that intelligently corrects the wrong presentation habits and attitudes of college students through facial analysis of videos and analyzed the proposed program's performance. The proposed program was developed through web-based verification of the use of redundant words and facial recognition and textualization of the presentation contents. To this end, an artificial intelligence model for classification was developed, and after extracting the video object, facial feature points were recognized based on the coordinates. Then, using 4000 facial data, the performance of the algorithm in this paper was compared and analyzed with the case of facial recognition using a Teachable Machine. Use the program to help presenters by correcting their presentation attitude.