• 제목/요약/키워드: video object extraction

검색결과 111건 처리시간 0.023초

고속의 세미오토매틱 비디오객체 추적 알고리즘 (A Fast Semiautomatic Video Object Tracking Algorithm)

  • 이종원;김진상;조원경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.291-294
    • /
    • 2004
  • Semantic video object extraction is important for tracking meaningful objects in video and object-based video coding. We propose a fast semiautomatic video object extraction algorithm which combines a watershed segmentation schemes and chamfer distance transform. Initial object boundaries in the first frame are defined by a human before the tracking, and fast video object tracking can be achieved by tracking only motion-detected regions in a video frame. Experimental results shows that the boundaries of tracking video object arc close to real video object boundaries and the proposed algorithm is promising in terms of speed.

  • PDF

비디오에서 객체의 시공간적 연속성과 움직임을 이용한 동적 객체추출에 관한 연구 (A Study on the Extraction of the dynamic objects using temporal continuity and motion in the Video)

  • 박창민
    • 디지털산업정보학회논문지
    • /
    • 제12권4호
    • /
    • pp.115-121
    • /
    • 2016
  • Recently, it has become an important problem to extract semantic objects from videos, which are useful for improving the performance of video compression and video retrieval. In this thesis, an automatic extraction method of moving objects of interest in video is suggested. We define that an moving object of interest should be relatively large in a frame image and should occur frequently in a scene. The moving object of interest should have different motion from camera motion. Moving object of interest are determined through spatial continuity by the AMOS method and moving histogram. Through experiments with diverse scenes, we found that the proposed method extracted almost all of the objects of interest selected by the user but its precision was 69% because of over-extraction.

몰입형 화상 회의를 위한 강건한 객체 추출 방법 (A Robust Object Extraction Method for Immersive Video Conferencing)

  • 안일구;오대영;김재광;김창익
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.11-23
    • /
    • 2011
  • 본 논문에서 우리는 실시간 성능이 요구되는 비디오 화상회의 시스템을 위해 사전정보 없이 정확하면서도 완전히 자동으로 비디오 객체를 추출하는 방법을 제안한다. 제안하는 방법은 두 단계로 이루어진다: 1) 초기 프레임에서의 정확한 객체 추출, 2) 객체 추출 결과를 이용한 그 이후 프레임에서의 실시간 객체 추출. 초기 프레임에서의 객체 추출은 초기 프레임들의 차영상으로부터 구한 에지들을 누적시킨 누적 에지맵 생성으로부터 시작된다. 즉, 객체의 초기 움직임의 누적으로부터 객체의 형상을 추측하고자 하는 것이다. 이 추측된 형상은 그래프 컷(Graph-Cut) 영상 분할을 위한 객체 씨드(seeds)와 배경 씨드를 할당하는데 이용된다. 그래프 컷 기반 객체 추출 이후 프레임부터는 객체 추출 결과와 연속된 프레임의 차영상의 에지맵을 이용하여 실시간 객체 추출이 수행된다. 실험결과를 통해 제안하는 방법이 이전 연구들과 달리 VGA 크기의 비디오에 대해서도 실시간으로 동작함을 보이고, 따라서 몰입적인 비디오 화상회의 시스템의 개발을 위한 유용한 도구임을 보이고자 한다.

2-모드 선택 기반의 압축비디오 신호의 움직임 객체 블록 추출 (Moving Object Block Extraction for Compressed Video Signal Based on 2-Mode Selection)

  • 김동욱
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권5호
    • /
    • pp.163-170
    • /
    • 2007
  • 본 논문에서는 압축된 비디오 신호의 움직임 벡터 및 DCT 계수로부터 움직임 객체를 추출하는 새로운 기법을 제시한다. 움직임 객체 추출에 관한 기술은 내용 기반 검색, 타겟트래킹 등 다양한 분야에서 필요로 한다. 움직임 객체 블록의 추출을 위해서 움직임 벡터와 DCT계수 가 선택적으로 이용되는 2-모드 방식의 기법이 제시된다. 또한, 제시된 기법은 DCT 변환 영역상의 계수들만을 이용하기 때문에 완전히 복호화된 정보를 필요로 하지 않는 장점을 갖는다. 제시된 기법을 바탕으로 몇 가지 테스터 영상에 대해 모의 실험을 실시한 결과 양호한 결과를 얻을 수 있었다.

  • PDF

Online Video Synopsis via Multiple Object Detection

  • Lee, JaeWon;Kim, DoHyeon;Kim, Yoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권8호
    • /
    • pp.19-28
    • /
    • 2019
  • In this paper, an online video summarization algorithm based on multiple object detection is proposed. As crime has been on the rise due to the recent rapid urbanization, the people's appetite for safety has been growing and the installation of surveillance cameras such as a closed-circuit television(CCTV) has been increasing in many cities. However, it takes a lot of time and labor to retrieve and analyze a huge amount of video data from numerous CCTVs. As a result, there is an increasing demand for intelligent video recognition systems that can automatically detect and summarize various events occurring on CCTVs. Video summarization is a method of generating synopsis video of a long time original video so that users can watch it in a short time. The proposed video summarization method can be divided into two stages. The object extraction step detects a specific object in the video and extracts a specific object desired by the user. The video summary step creates a final synopsis video based on the objects extracted in the previous object extraction step. While the existed methods do not consider the interaction between objects from the original video when generating the synopsis video, in the proposed method, new object clustering algorithm can effectively maintain interaction between objects in original video in synopsis video. This paper also proposed an online optimization method that can efficiently summarize the large number of objects appearing in long-time videos. Finally, Experimental results show that the performance of the proposed method is superior to that of the existing video synopsis algorithm.

비디오 시퀸스에서 움직임 객체 분할과 VOP 추출을 위한 강력한 알고리즘 (A Robust Algorithm for Moving Object Segmentation and VOP Extraction in Video Sequences)

  • 김준기;이호석
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권4호
    • /
    • pp.430-441
    • /
    • 2002
  • 비디오 객체 분할은 MPEG-4와 같은 객체기반 비디오 코딩을 위한 중요한 구성 요소이다. 본논문은 비디오 시퀸스에서 움직임 객체 분할을 위한 새로운 알고리즘과 VOP(Video Object Plane)추출 방법을 소개한다. 본 논문의 핵심은 시간적으로 변하는 움직임 객체 에지와 공간적 객체 에지 검출 결과를 효율적으로 조합하여 정확한 객체 경계를 추출하는 것이다. 이후 추출된 에지를 통하여 VOP를 생성한다. 본 알고리즘은 첫 번째 프레임을 기준영상으로 설정한 후 두 개의 연속된 프레임 사이의 움직임 픽셀 차이 값으로부터 시작된다. 차이영상을 추출한 후 차이영상에 Canny 에지 연산과 수리형태 녹임 연산(erosion)을 적용하고, 다음 프레임의 영상에 Canny 에지 연산과 수리형태 녹임 연산을 적용하여 두 프레임 사이의 에지 비교를 통하여 정확한 움직임 객체 경계를 추출한다. 이 과정에서 수리형태학 녹임 연산은 잘못된 객체 에지의 검출을 방지하는 작용을 한다. 두 영상 사이의 정확한 움직임 객체 에지(moving object edge)는 에지 크기를 조절하여 생성한다. 본 알고리즘은 픽셀 범위까지 고려한 정화한 객체의 경계를 얻음으로서 매우 쉬운 구현과 빠른 객체 추출을 보였다.

Fast Extraction of Objects of Interest from Images with Low Depth of Field

  • Kim, Chang-Ick;Park, Jung-Woo;Lee, Jae-Ho;Hwang, Jenq-Neng
    • ETRI Journal
    • /
    • 제29권3호
    • /
    • pp.353-362
    • /
    • 2007
  • In this paper, we propose a novel unsupervised video object extraction algorithm for individual images or image sequences with low depth of field (DOF). Low DOF is a popular photographic technique which enables the representation of the photographer's intention by giving a clear focus only on an object of interest (OOI). We first describe a fast and efficient scheme for extracting OOIs from individual low-DOF images and then extend it to deal with image sequences with low DOF in the next part. The basic algorithm unfolds into three modules. In the first module, a higher-order statistics map, which represents the spatial distribution of the high-frequency components, is obtained from an input low-DOF image. The second module locates the block-based OOI for further processing. Using the block-based OOI, the final OOI is obtained with pixel-level accuracy. We also present an algorithm to extend the extraction scheme to image sequences with low DOF. The proposed system does not require any user assistance to determine the initial OOI. This is possible due to the use of low-DOF images. The experimental results indicate that the proposed algorithm can serve as an effective tool for applications, such as 2D to 3D and photo-realistic video scene generation.

  • PDF

비디오객체의 경계향상을 위한 VLSI 구조 (VLSI Architecture for Video Object Boundary Enhancement)

  • 김진상
    • 한국통신학회논문지
    • /
    • 제30권11A호
    • /
    • pp.1098-1103
    • /
    • 2005
  • 에지나 윤곽 정보는 인간의 시각 시스템에 의하여 가장 잘 인식되며 객체의 인식과 지각에 사용되는 중요한 정보이다. 그러므로 비디오내의 객체간의 상호작용, 객체기반 코딩과 표현과 같은 응용을 위하여, 비디오객체의 추출과정에 에지정보를 적용하면 인간의 시각 시스템과 근접한 객체 경계를 얻을 수 있다. 대부분의 객체추출 방식은 연산량이 많고 반복적인 연산을 수행하므로 실시간 처리가 어렵다. 본 논문에서는 비디오객체 분할 과정에 에지 정보를 적용하여 정확한 객체 경계를 추출하는 VLSI 구조를 제안한다. 제안된 하드웨어 구조는 연산방식이 간단하므로 하드웨어로 쉽게 구현될 수 있으며, 제안된 VLSI 하드웨어 구조를 이용하면 객체기반 멀티미디어 응용을 위하여 실시간으로 비디오객체를 분할할 수 있다.

윤곽선 재조정을 통한 의미 있는 객체 추적 알고리즘 (A Semantic Video Object Tracking Algorithm Using Contour Refinement)

  • 임정은;이재연;나종범
    • 대한전자공학회논문지SP
    • /
    • 제37권6호
    • /
    • pp.1-8
    • /
    • 2000
  • 이 논문은 동영상에서 의미 있는 객체를 추적하기 위해, 첫 번째 프레임에서 사용자가 관심 대상인 객체를 정의하고, 그 다음 프레임부터 자동으로 그 객체를 추적하는 반자동 기법을 제안한다. 제안한 객체 추적 알고리즘은 객체 경계 투영, 불확실 영역 추출, 경계 재조정 단계 등 모두 세 단계로 구성되며, 첫 단계에서는 움직임 추정을 통해 이전 프레임에서 현재 프레임으로 객체를 투영하고, 두 번째 단계는 투영한 결과를 이용하여 윤곽선 부근에서 투영이 불확실한 영역을 MC 오류 및 색채 유사성 검사를 거쳐 추출하며, 마지막으로 투영이 불확실한 영역을 재조정함으로써 정확한 객체의 경계를 찾는다. 모의 실험을 통해 제안한 알고리즘이 기존의 반자동 알고리즘에 비해 다양한 영상에 대해 만족할 만한 결과를 보임을 확인하였다.

  • PDF

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권2호
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.