• Title/Summary/Keyword: vibrator

Search Result 296, Processing Time 0.021 seconds

Design and Displacement Analysis by ANSYS of Ultrasonic Linear Motor (초음파 리니어 모터의 설계와 ANSYS에 의한 변위량해석)

  • 김태열;강도원;김범진;박태곤;김명호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.300-302
    • /
    • 1999
  • The standing waves of the fourth bending mode of vibration and first longitudinal mode of vibrator were utilized to construct a ultrasonic linear motor. The geometrical dimensions of the vibrator were determined by Euler-Bernoulli theoty. FEM(finite element method) employed to calculate the vibration mode of the metal-piezoceramic composite thin plate vibrator. ANSYS was used to design positions of the projections and calculate displacement of vibrator.

  • PDF

A Control of Vibrator Using PM Excited Transverse Flux Linear Motor (영구자석 여자 횡축형 선형 전동기(TFLM)를 이용한 가진기 제어)

  • 임태윤;강도현;김종무;김동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.281-288
    • /
    • 2002
  • This paper has realized a control system of a vibrator using PM excited Transverse Flux Linear Motor(TFLM). Proposed vibrator can supply a vibration force up to 700[N] at rated current, wide operation range of vibration displacement and high frequency for a tested structure. Also, volume of a vibrator system can be decreased because of a high trust force rato(a thrust force per weight=N/Kg). A proposed vibrator instead of a hydraulic vibrator can improve efficiency and have may advantages of maintenance and management. A desired value command is a vibration frequency and displacement in a controller for a vibrator system and a controlled values we a instant position and velocity of a mover Output value of the controller is phase current controlled by PWM converter. In this research, Dynamic simulation has been executed for analysis of a control algorithm and dvnauuc characteristics and is compared with experimental result.

A Case Report of Gait Disturbance due to Acute Low Back Pain Syndrome improved with Whidam's Vibrator Pelvic Sugi Therapy (휘담식 진동기 골반수기로 개선된 급성 요통 증후군으로 인한 보행장애 증례)

  • Jeong Jae hun;Gam Mai Pil;Sam Sik Na
    • Journal of Korean Medical Ki-Gong Academy
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Objective : The purpose of this study is to report the results of treating patients with acute low back pain syndrome who are difficult to walk with Whidam's Vibrator Pelvic Sugi Therapy. Methods : We used combinations of korean medicine such as herbal medicine, acupuncture, cupping therapy, and thermal therapy. At the same time, the patient was treated with Whidam's Vibrator Pelvic Sugi Therapy. The first period of hospitalization was 14 days and the second period was 54 days. At the second hospitalization, back pain recurred and was unable to walk. At the first hospitalization, L5-S1 HIVD and L4-5 Mild HIVD were diagnosed on lumbar MRI, and there was no abnormality in blood tests. Results : By relieving muscle tension and restoring the weakened muscle elasticity with herbal treatment and Whidam's Vibrator Pelvic Sugi Therapy, back pain decreased and the inability to walk gradually improved, making it possible to walk on its own. Conclusions : The results of standing and walking on one's own were obtained by relieving muscle tension and restoring weakened muscle elasticity in acute back pain syndrome with gait disturbance diagnosed with lumbar herniated intervertebral disc through korean medicine treatment and Whidam's Vibrator Pelvic Sugi Therapy. Whidam's Vibrator Pelvic Sugi Therapy is thought to help acute back pain by restoring muscle elasticity and strengthening muscle strength. In the future, it is expected that additional clinical studies will be conducted on various pain diseases with Whidam's Vibrator Pelvic Sugi Therapy.

A Displacement Analysis of 2-Dimensional Tool Vibrator (2차원 공구진동기구의 변위 해석)

  • 손성민;임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.898-901
    • /
    • 2000
  • In this paper, the theoretical tool displacement and surface roughness are analyzed based on the tool locus of a 2-dimensional tool vibrator. At first, the effects assuming no structural deformation of such variables as frequency, amplitude and phase difference that determine tool loci are simulated. The results show that larger amplitude and/or higher frequency makes better surface. However, a real tool vibrator has the structural deformation, much or less, depending on the excitation frequency. Applying FEM analysis to the deformation of a designed 2D tool vibrator according to the excitation, it has been proved that in this case the displacement is 5${\mu}{\textrm}{m}$ at 1KHz and almost 0 at 20KHz even under the same excitation amplitude.

  • PDF

Aluminum Wire Bonding by Longitudinal Vibration of Ultrasonic Transducer (초음파 트랜스듀서의 종진동을 이용한 알루미늄 와이어 용접)

  • Lee, G.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.38-45
    • /
    • 1996
  • In recent years, ultrasonic has been widely applied in measurement and industrial fields and its application range has been expanded as a result of continuous research and development. Wire Bonding Machine, an instrument fabricating semi-conductor, makes use of ultrasonic bonding method. Specially, the method utilizes the longitudinal vibration of ultrasonic transducer composed of piezoelectric vibrator and horn. This work investigates the design conditions affecting the dynamic characteristics through the theretical and experimental analysis. It conducts separately the system identification of piezoelectric vibrator in time domain and the modal analysis of horn in frequency domain. The integrated modeling is conducted via a combbination of dynamic identification of piezoelectric vibrator and theroretical analysis of horn. Then comparison is made for theroretical and experimental results of the dynamic characteristics of the ultrasonic transducer comprised of piezoelectric vibrator and horn. Form the results of the comparison we develop the design technique of ultrasonic transducer using dynamic characteristics analysis and propose the possibility of ultrasonic bonding considering the optimal conditions for the longitudinal vibration of ultrasonic transducer and other conditions.

  • PDF

Fabrication and charateristics of the foot-spa driving circuit using ultrasonic vibrator (초음파 진동자를 이용한 족욕기용 구동회로 제작 및 특성)

  • Jang, Eun-Sung;Kim, Hyeung-Kyu;Lee, Sang-Ho;Yoo, Ju-Hyun;Hwang, Lak-Hoon;Jeong, Hoy-Seung;Chung, Kwang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.705-709
    • /
    • 2004
  • In this study, the foot-spa driving circuit using ultrasonic vibrator was manufactured The used ultrasonic vibrator was PSN-PMN-PZT ceramic with the radius of $25{\Phi}$ and the thickness of 2, 2.5, 3, 3.5 and 4mm, respectively. Resonent frequency for driving ultrasonic vibrator at the fabricated circuit was generated using the self exciting and the external exciting methods. Fabricated foot-spa showed the best condition at the resonent frequency of 1.130MHz and the ceramic thickness of 2.0mm. That is, when the foot-spa was operated for 360 min. at $0.5\ell$ water, temperature increase of water was $14^{\circ}C$ at the self exciting method and $16^{\circ}C$ at the external exciting methods, respectively.

  • PDF

Equivalent Circuit Modeling of Wideband Underwater Acoustic Piezoelectric Vibrator (광대역 수중 음향 압전 진동체의 등가회로 모델링)

  • 조치영;김원호;윤형규
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.645-652
    • /
    • 1996
  • In this paper an identification method is presented to obtain the equivalent electric circuit model of a wideband underwater acoustic piezoelectric vibrator. Unknown parameters involved in the equivalent circuit are indentified using the measured electrical admittances in air. The proposed method is applied to an example transducer. The validity of equivalent circuit model is demonstrated by the comparison between the experimental measurements and analytical calculations of TVR(transmitting voltage response) in water.

  • PDF

Design and FEM Analysis of Ultrasonic Linear Motor (초음파 리니어 모터의 설계와 유한요소 해석)

  • 김태열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.210-215
    • /
    • 1999
  • The standing waves of the fourth bending ode of vibration and the first longitudinal mode of vibration were utilized to construct a ultrasonic linear motor. The geometrical dimensions of the vibrator were determined by Euler-Bernoulli theory. FEM(finite element method) employed to calculate the vibration mode of the metal-piezoceramic composite thin plate vibrator. ANSYS was used to design positions of the projections and calculate displacement of vibrator.

  • PDF

Electrical Properties of a Laminated Piezoelectric Transformer with the Divided Electrodes (전극 분할 적층형 압전변압기의 전기적 특성)

  • Lee, Yong-Kuk;Lee, Sang-Cheal;Hur, Doo-Oh;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1140-1142
    • /
    • 1995
  • The transformer is fabricated with two piezoelectric vibrator with the divided electrodes and adhesive insulator. We applied the electric input to the driving vibrator in parallel and connect the output voltage to the generating vibrator in series to the resistor load near its fundamental resonance frequency. Then we investigate output voltage in series twice as large as in parallal. Moreover we investigate the load characteristics at resonance frequencies under various resistor and the frequency characteristics near the resonance frequency under no load. Its equvalent circuit is derived from the Mason's model of a thickness-driven piezelectric vibrator. By its equevalent circuit, symbolic expressions for input impedances, voltage ratios, resonance frequencies, and bandwidths have been derived. The values calculated from those symbolic exprssions are shown to agree well with the measurement values.

  • PDF

Evaluation and Design of Ultrasonic Vibrator for Dental Surgery (치과용 골 수술기의 초음파 진동자 설계 및 평가)

  • Park, Ki-Moon;Kim, Jung-Hyun;Ko, Tae Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.102-108
    • /
    • 2016
  • A dental ultrasonic surgical instrument, commercially known as a scaler, is a high-value-added advanced technology that is used for tartar removal, implant operations, and gum and jaw bone surgery. In this study, the piezoelectric phenomenon for making linear motion associated with input electrical signals was studied, and the behavior of the ultrasonic vibrator was investigated by using the commercially available finite element program ANSYS(R) for the purpose of designing dental surgery tools. Modal analysis was carried out, and the optimal frequency range was calculated from the analyzed results. The ultrasonic vibrator was then redesigned based on the calculated optimal frequency range. The performance of the system was tested, and consequently, the proposed methodology was proven useful in vibrator design.