• Title/Summary/Keyword: vibration table experiment

Search Result 40, Processing Time 0.021 seconds

Experimental damage evaluation of prototype infill wall based on forced vibration test

  • Onat, Onur
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.77-90
    • /
    • 2019
  • This paper aims to investigate vibration frequency decrease (vibration period elongation) of reinforced concrete (RC) structure with unreinforced infill wall and reinforced infill wall exposed to progressively increased artificial earthquake load on shaking table. For this purpose, two shaking table experiments were selected as a case study. Shaking table experiments were carried on 1:1 scaled prototype one bay one storey RC structure with infill walls. The purpose of this shaking table experiment sequence is to assess local behavior and progressive collapse mechanism. Frequency decrease and eigen-vector evolution are directly related to in-plane and out-of-plane bearing capacities of infill wall enclosure with reinforced concrete frame. Firstly, frequency decrease-damage relationship was evaluated on the base of experiment results. Then, frequency decrease and stiffness degradation were evaluated with applied Peak Ground Acceleration (PGA) by considering strength deterioration. Lastly, eigenvector evolution-local damage and eigenvector evolution-frequency decrease relationship was investigated. Five modes were considered while evaluating damage and frequency decrease of the tested specimens. The relationship between frequency decrease, stiffness degradation and damage level were presented while comparing with Unreinforced Brick Infill (URB) and Reinforced Infill wall with Bed Joint Reinforcement (BJR) on the base of natural vibration frequency.

Active Control of Air-Spring Vibration Isolator (공기스프링 방진대의 능동제어)

  • 송진호;김규용;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1605-1617
    • /
    • 1994
  • Air-spring is widely used in vibration isolation to reduce the table vibration. When a disturbance is applied to a table, however, it starts virbrating with a low frequency, but has a large displacement due to the reacting force of air-spring. In this study, to solve the table vibration problem, an active vibration control device based on state feedback control using air-spring and proportional control valves was designed. This device can suppress the displacement of the isolation table within allowable range, even any kind of disturbances are applied to the table. Firstly, theoretical analysis of an air-spring isolator was done. Secondly, characteristics of the isolator was investigated via computer simulation and experiment. Finally, active control of air-spring isolator was tested using optimal(LQG) and fuzzy control algorithms was performed to show the effectiveness of the control schems.

Active Control of Vibration Isolation Table Using Air-spring (공기스프링을 이용한 방진테이블의 능동 제어)

  • An, Chae-Hun;Yim, Kwang-Hyeok;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.565-571
    • /
    • 2007
  • In the process of accurate manufacture and measurement, it is necessarily required to isolate external or internal vibration due to external disturbance and internal actuators. The higher vibration isolation system gets damping around resonance, the better it is generally. This paper analyzes the performance of an existing passive air-spring for vibration isolation table by using experiment and simulation. Optimal design for a passive air spring can be obtained by tuning the size of the orifice. Also design for an active isolation system is carried out by applying PID controller and considering non-linearity of pneumatic characteristics with help of look-up table. We have developed the active vibration isolation table with the better isolation performance.

Active Control of Vibration Isolation Table Using Air-spring (공기스프링을 이용한 방진 테이블의 능동 제어)

  • An, Chae-Hun;Yim, Kwang-Hyeok;Kwon, Hyeok-Jin;Jung, Jin-Hoon;Bae, Yoon-Hwa;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.831-836
    • /
    • 2006
  • In the process of accurate manufacture and measurement, it is necessarily required to isolate external or internal vibration due to external disturbance and internal actuators. The higher vibration isolation system gets damping around resonance, the better it is generally. This paper analyzes the performance of an existing passive air-spring for vibration isolation table by using experiment and simulation. Optimal design for a passive air spring can be obtained by tuning the size of the orifice. Also design for an active isolation system is carried out by applying PID controller and considering non-linearity of pneumatic characteristics with help of look-up table. We have developed the active vibration isolation table with the better isolation performance.

  • PDF

Development of precision vibration isolation table and study of dynamic characteristics with experiment (정밀 제진대 개발 및 동특성에 관한 실험적 연구)

  • 김인수;김종연;한문성;김영중
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.329-334
    • /
    • 2001
  • Recently, the high precision technology can not be developed continuously if we don't have anti vibration technology. Vibration isolation technology using an air spring and laminated robber bearing is widely used because it has excellent vibration isolation characteristics. We developed high precision vibration table with two good element(air spring and LRB) for semiconductor factory. Air Spring is used for isolating the vertical vibration and LRB is used for isolating the horizontal Vibration. As a result, It has D-Class degree in BBR-Criteria. In this paper, we talk about orifice characteristics in the self-damped air spring and design flow of the laminated robber bearing. The orifice characteristics is delicate shade of length and diameter. When we do experimentation to find orifice characteristics, length is fixed and diameter is changed. The orifice diameter is the wider and the air spring stiffness is the softer.

  • PDF

Examination on Active Pneumatic Vibration Isolation Table with Moving Masses on It by Time Delay Control (이동 질량을 포함하는 능동형 공압제진대에 대한 시간지연제어기법의 적용 검토)

  • Shin, Yun-Ho;Moon, Seok-Jun;Chung, Jung-Hoon;Kim, Byung-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.858-867
    • /
    • 2011
  • As applying an active control technique to a pneumatic vibration isolation system, the settling time for the payload excitation could be remarkably reduced as well as the improvement of isolation performance for the ground vibration. Some previous researches were dealt with the settling time through the simulation or experiment but, the discussion on the simulation or experimental results including moving parts, such as a XY-stage, on the isolation table rarely exists. As considering the moving part, the dynamic model could be time varying system and in such a case the force imposed on pneumatic vibration isolation table could be described by inertial forces of moving parts according to Newton's 3rd law, the action and reaction law. In this paper, the simulation procedure of the 3-DOF active pneumatic vibration isolation system including moving parts by TDC(time delay control) technique is proposed and the effectiveness through simulation results are also shown.

공기스프링을 이용한 방진 테이블의 능동 제어

  • Im, Gyeong-Hwa;Jin, Gyeong-Bok;An, Chae-Heon;Park, Jeong-Geun
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.184-189
    • /
    • 2006
  • In the process of accurate manufacture and measurement, it is necessarily required to isolate external or internal vibration due to external disturbance and internal actuators. The higher vibration isolation system gets damping around resonance, the better it is generally. This paper analyzes the performance of an existing passive air-spring for vibration isolation table by rising experiment and simulation. Optimal design for a passive air spring can be obtained by fluting the size of the orifice. Also design for an active isolation system is carried out by applying PID controller and considering non-linearity of pneumatic characteristics with help of look-up table. We have developed the act ive vibration isolation table wi th the bet ter isolation performance.

  • PDF

Dynamic Characteristics and Isolation Performance of Isolation Table System (면진 테이블 시스템의 동적 특성 및 면진성능)

  • ;;;Kurabayashi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.67-74
    • /
    • 2001
  • Structural engineers lately have an interest in the safety for equipments and facility in buildings subjected to earthquake. The stability of cultural assets was not considered for the earthquake induced vibration, while the integrity of structure has been considered through the resistant earthquake design. The purpose of this study aimed to analyze the behavior of isolation device named as \"Isolation table system\" and to evaluate its isolation performance through the experiment study. Isolation table is one of isolation systems to reduce the vibration which was transferred from slab to exhibition table. Experimental result shows that isolation table can reduce the vibration by 80-90% and its behavior is very stable within its maximal stroke.al stroke.

  • PDF

Vibration control of the vibration isolation system using the electromagnetic actuator (전자석 액츄에이터에 의한 수동방진 테이블의 제어)

  • Choi, Hyun;Lee, Jung-Youn
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.227-232
    • /
    • 2003
  • As the most precision equipment requiring very strict vibration environment are vulnerable to the surrounding vibration condition, they adapt the passive or active vibration isolation system. When it comes to the passive isolation system, the resonance of the isolation system causes excessive resonance response, and finally results in the degrade the equipment performance. This paper deals with the active control method to control this resonance induced response, and includes the experiment on the active control for controlling the resonance response on the table against the excitation of the same frequency with the natural frequency of the isolation system. The electromagnetic actuator was designed and the control effect was verified by the experiment. The experiment showed that the electromagnetic actuator is effective for controlling the low frequency isolation resonance response of the precision equipment.

  • PDF

The Vibration Performance Experiment of Tuned Liquid Damper and Tuned Liquid Column Damper

  • Kim Young-Moon;You Ki-Pyo;Cho Ji-Eun;Hong Dong-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.795-805
    • /
    • 2006
  • Tuned Liquid damper and Tuned Liquid Column are kind of passive mechanical damper which relies on the sloshing of liquid in a rigid tank for suppressing structural vibrations. TLD and TLCD are attributable to several potential advantages - low costs ; easy to install in existing structures : effective even for small-amplitude vibrations. In this paper, the shaking table experiments were conducted to investigate the characteristics of water sloshing motion in TLD (rectangular, circular) and TLCD. The parameter obtained from the experiments were wave height, base shear force and energy dissipation. The shaking table experiments show that the liquid sloshing relies on amplitude of shaking table and frequency of tank. The TLCD was more effective control vibration than TLD.