• Title/Summary/Keyword: vibration signal feature

Search Result 60, Processing Time 0.024 seconds

Crack Detection of Rotating Blade using Hidden Markov Model (회전 블레이드의 크랙 발생 예측을 위한 은닉 마르코프모델을 이용한 해석)

  • Lee, Seung-Kyu;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.99-105
    • /
    • 2009
  • Crack detection method of a rotating blade was suggested in this paper. A rotating blade was modeled with a cantilever beam connected to a hub undergoing rotating motion. The existence and the location of crack were able to be recognized from the vertical response of end tip of a rotating cantilever beam by employing Discrete Hidden Markov Model (DHMM) and Empirical Mode Decomposition (EMD). DHMM is a famous stochastic method in the field of speech recognition. However, in recent researches, it has been proved that DHMM can also be used in machine health monitoring. EMD is the method suggested by Huang et al. that decompose a random signal into several mono component signals. EMD was used in this paper as the process of extraction of feature vectors which is the important process to developing DHMM. It was found that developed DHMMs for crack detection of a rotating blade have shown good crack detection ability.

  • PDF

Wavelet-like convolutional neural network structure for time-series data classification

  • Park, Seungtae;Jeong, Haedong;Min, Hyungcheol;Lee, Hojin;Lee, Seungchul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • Time-series data often contain one of the most valuable pieces of information in many fields including manufacturing. Because time-series data are relatively cheap to acquire, they (e.g., vibration signals) have become a crucial part of big data even in manufacturing shop floors. Recently, deep-learning models have shown state-of-art performance for analyzing big data because of their sophisticated structures and considerable computational power. Traditional models for a machinery-monitoring system have highly relied on features selected by human experts. In addition, the representational power of such models fails as the data distribution becomes complicated. On the other hand, deep-learning models automatically select highly abstracted features during the optimization process, and their representational power is better than that of traditional neural network models. However, the applicability of deep-learning models to the field of prognostics and health management (PHM) has not been well investigated yet. This study integrates the "residual fitting" mechanism inherently embedded in the wavelet transform into the convolutional neural network deep-learning structure. As a result, the architecture combines a signal smoother and classification procedures into a single model. Validation results from rotor vibration data demonstrate that our model outperforms all other off-the-shelf feature-based models.

An Availability of Low Cost Sensors for Machine Fault Diagnosis

  • SON, JONG-DUK
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.394-399
    • /
    • 2012
  • In recent years, MEMS sensors show huge attraction in machine condition monitoring, which have advantages in power, size, cost, mobility and flexibility. They can integrate with smart sensors and MEMS sensors are batch product. So the prices are cheap. And the suitability of it for condition monitoring is researched by experimental study. This paper presents a comparative study and performance test of classification of MEMS sensors in target machine fault classification by 3 intelligent classifiers. We attempt to signal validation of MEMS sensor accuracy and reliability and performance comparisons of classifiers are conducted. MEMS accelerometer and MEMS current sensors are employed for experiment test. In addition, a simple feature extraction and cross validation methods were applied to make sure MEMS sensors availabilities. The result of application is good for using fault classification.

  • PDF

Anomaly Diagnosis of Rotational Machinery Using Time-Series Vibration Data Based on Time-Distributed CNN-LSTM (시분할 CNN-LSTM 기반의 시계열 진동 데이터를 이용한 회전체 기계 설비의 이상 진단)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1547-1556
    • /
    • 2022
  • As mechanical facilities are interacting with each other, the failure of some equipment can affect the entire system, so it is necessary to quickly detect and diagnose the abnormality of mechanical equipment. This study proposes a deep learning model that can effectively diagnose abnormalities in rotating machinery and equipment. CNN is widely used for feature extraction and LSTMs are known to be effective in learning sequential information. In LSTM, the number of parameters and learning time increase as the length of input data increases. In this study, we propose a method of segmenting an input segment signal into shorter-length sub-segment signals, sequentially inputting them to CNN through a time-distributed method for extracting features, and inputting them into LSTM. A failure diagnosis test was performed using the vibration data collected from the motor for ventilation equipment installed at the urban railway station. The experiment showed an accuracy of 99.784% in fault diagnosis. It shows that the proposed method is effective in the fault diagnosis of rotating machinery and equipment.

Condition Classification for Small Reciprocating Compressors Using Wavelet Transform and Artificial Neural Network (웨이브릿 변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류)

  • Lim, D.S.;Yang, B.S.;An, B.H.;Tan, A.;Kim, D.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.29-35
    • /
    • 2003
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a classification method of diagnosing the small reciprocating compressor for refrigerators using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them ate compared with each other. This paper is focused on the development of an advanced signal classifier to automatize the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF

Structural damage detection in presence of temperature variability using 2D CNN integrated with EMD

  • Sharma, Smriti;Sen, Subhamoy
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.379-402
    • /
    • 2021
  • Traditional approaches for structural health monitoring (SHM) seldom take ambient uncertainty (temperature, humidity, ambient vibration) into consideration, while their impacts on structural responses are substantial, leading to a possibility of raising false alarms. A few predictors model-based approaches deal with these uncertainties through complex numerical models running online, rendering the SHM approach to be compute-intensive, slow, and sometimes not practical. Also, with model-based approaches, the imperative need for a precise understanding of the structure often poses a problem for not so well understood complex systems. The present study employs a data-based approach coupled with Empirical mode decomposition (EMD) to correlate recorded response time histories under varying temperature conditions to corresponding damage scenarios. EMD decomposes the response signal into a finite set of intrinsic mode functions (IMFs). A two-dimensional Convolutional Neural Network (2DCNN) is further trained to associate these IMFs to the respective damage cases. The use of IMFs in place of raw signals helps to reduce the impact of sensor noise while preserving the essential spatio-temporal information less-sensitive to thermal effects and thereby stands as a better damage-sensitive feature than the raw signal itself. The proposed algorithm is numerically tested on a single span bridge under varying temperature conditions for different damage severities. The dynamic strain is recorded as the response since they are frame-invariant and cheaper to install. The proposed algorithm has been observed to be damage sensitive as well as sufficiently robust against measurement noise.

A Fault Prognostic System for the Logistics Rotational Equipment (물류 회전설비 고장예지 시스템)

  • Soo Hyung Kim;Berdibayev Yergali;Hyeongki Jo;Kyu Ik Kim;Jin Suk Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.168-175
    • /
    • 2023
  • In the era of the 4th Industrial Revolution, Logistic 4.0 using data-based technologies such as IoT, Bigdata, and AI is a keystone to logistics intelligence. In particular, the AI technology such as prognostics and health management for the maintenance of logistics facilities is being in the spotlight. In order to ensure the reliability of the facilities, Time-Based Maintenance (TBM) can be performed in every certain period of time, but this causes excessive maintenance costs and has limitations in preventing sudden failures and accidents. On the other hand, the predictive maintenance using AI fault diagnosis model can do not only overcome the limitation of TBM by automatically detecting abnormalities in logistics facilities, but also offer more advantages by predicting future failures and allowing proactive measures to ensure stable and reliable system management. In order to train and predict with AI machine learning model, data needs to be collected, processed, and analyzed. In this study, we have develop a system that utilizes an AI detection model that can detect abnormalities of logistics rotational equipment and diagnose their fault types. In the discussion, we will explain the entire experimental processes : experimental design, data collection procedure, signal processing methods, feature analysis methods, and the model development.

Development of facility safety diagnosis system for offshore wind power using semi-supervised machine learning (준지도 학습 머신러닝을 이용한 해상 풍력용 설비안전 진단 시스템의 개발)

  • Woo-Jin Choi
    • Journal of Wind Energy
    • /
    • v.13 no.3
    • /
    • pp.33-42
    • /
    • 2022
  • In this paper, a semi-supervised machine learning technique applied to actual field vibration data acquired from Jeju-do wind turbines for predictive diagnosis of abnormal conditions of offshore wind turbines is introduced. Semi-supervised machine learning, which combines un-supervised learning with supervised learning, can be used to perform anomaly detection in situations where sufficient fault data cannot be obtained. The signal processing results using the spectrogram of the original signal were shown, and external data were used to overcome the problem that disturbance reactions easily occurred due to the imbalance between the number of normal and abnormal data. Out of distribution (OOD), which uses external data, is a technology that is regarded as abnormal data that is unlikely to occur in reality, but we were able to use it by expanding it. By rearranging the distribution of data in this way, classification can be performed more robustly. Specifically, by observing the trends of the abnormal score and the change in the feature of the representation layer, continuous learning was performed through a mixture of existing and new data.

Detection of Main Spindle Bearing Conditions in Machine Tool via Neural Network Methodolog (신경회로망을 이용한 공작기계 주축용 베어링의 고장검지)

  • Oh, S.Y.;Chung, E.S.;Lim, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.33-39
    • /
    • 1995
  • This paper presents a method of detecting localized defects on tapered roller bearing in main spindle of machine tool system. The statistical parameters in time-domain processing technique have been calculated to extract useful features from bearing vibration signals. These features are used by the input feature of an artificial neural network to detect and diagnose bearing defects. As a results, the detection of bearing defect conditions could be successfully performed by using an artificial neural network with statistical parameters of acceleration signals.

  • PDF

Application of joint time-frequency distribution for estimation of time-varying modal damping ratio

  • Bucher, H.;Magluta, C.;Mansur, W.J.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.131-147
    • /
    • 2011
  • The logarithmic decrement method has been long used to estimate damping ratios in systems with only one modal component such as linear single degree of freedom (SDOF) mechanical systems. This paper presents an application of a methodology that uses joint time-frequency distribution (JTFD) as input, instead of the raw signal, to systems with several vibration modes. A most important feature of the present approach is that it can be applied to a system with time-varying damping ratio. Initially the precision and robustness of the method is determined using a synthetic model with multiple harmonic components, one of them displaying a time-varying damping ratio, subsequently the results obtained from experiments with a reduced model are presented. A comparison is made between the results obtained with this methodology and those using the classical technique of Least Squares Complex Exponential Method (LSCE) in order to highlight the advantages of the former, such as, good precision, robustness and excellent performance in extreme cases, e.g., when very low frequency components and time varying damping ratio are present.