Acknowledgement
Supported by : National Research Foundation of Korea, Small and Medium Business Administration, Korea Evaluation Institute of Industrial Technology
References
- Borghetti, A., Bosetti, M., Di Silvestro, M., Nucci, C.A. and Paolone, M. (2008), "Continuous-wavelet transform for fault location in distribution power networks: Definition of mother wavelets inferred from fault originated transients", IEEE T. Power Syst., 23(2), 380-388. https://doi.org/10.1109/TPWRS.2008.919249
- Chase Lipton, Z., Elkan, C. and Narayanaswamy, B. (2014), "Thresholding Classifiers to Maximize F1 Score", arXiv preprint arXiv:1402.1892.
- Chen, Z., Li, C. and Sanchez, R.V. (2015), "Gearbox fault identification and classification with convolutional neural networks", J. Shock Vib., 2015.
- Cui, Z., Chen, W. and Chen, Y. (2016), "Multi-scale convolutional neural networks for time series classification", arXiv preprint arXiv:1603.06995.
- Donoho, D.L. (1993), "Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data", In Proceedings of Symposia in Applied Mathematics.
- Donoho, D L. (1993), "Unconditional bases are optimal bases for data compression and for statistical estimation", Appl. Comput. Harmon. A., 1(1), 100-115. https://doi.org/10.1006/acha.1993.1008
- Donoho, D.L. and Johnstone, I.M. (1994), "Ideal spatial adaptation by wavelet shrinkage", Biometrika, 425-455.
- Donoho, D.L. and Johnstone, I.M. (1995), "Adapting to unknown smoothness via wavelet shrinkage", J. Am. Statist. Sssociation, 90(432), 1200-1224. https://doi.org/10.1080/01621459.1995.10476626
- Donoho, D.L. and Johnstone, J.M. (1994), "Ideal spatial adaptation by wavelet shrinkage", Biometrika, 81(3), 425-455. https://doi.org/10.1093/biomet/81.3.425
- Gelman, L., Patel, T.H., Persin, G., Murray, B. and Thomson, A. (2013), "Novel technology based on the spectral kurtosis and wavelet transform for rolling bearing diagnosis", Int. J. Prognost. Health Management, 2153-2648.
- Gelman, L., Petrunin, I., Jennions, I.K. and Walters, M. (2012), "Diagnostics of local tooth damage in gears by the wavelet technology", Int. J. Prognost. Health Management, 3(52).
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
- Jaber, A.A. and Bicker, R. (2016), "Industrial robot backlash fault diagnosis based on discrete wavelet transform and artificial neural network", Am. J. Mech. Eng., 4(1), 21-31.
- Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., Loccufier, M., Verstockt, S. and Van Hoecke, S. (2016), "Convolutional neural network based fault detection for rotating machinery", J. Sound Vib., 377, 331-345. https://doi.org/10.1016/j.jsv.2016.05.027
- Jeong, H., Park, S., Woo, S. and Lee, S. (2016), "Rotating machinery diagnostics u sing deep learning on orbit plot images", Procedia Manufact., 5, 1107-1118. https://doi.org/10.1016/j.promfg.2016.08.083
- Jung, U., and Koh, B. (2014), "Bearing fault detection through multiscale wavelet scalogram-based SPC", Smart Struct. Syst., 14(3), 377-395. https://doi.org/10.12989/sss.2014.14.3.377
- Korekado, K., Morie, T., Nomura, O., Ando, H., Nakano, T., Matsugu, M. and Iwata, A. (2003), "A convolutional neural network VLSI for image recognition using merged/mixed analog-digital architecture", In Knowledge-Based Intelligent Information and Engineering Systems, 169-176. Springer Berlin/Heidelberg.
- LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R E., Hubbard, W. and Jackel, L.D. (1989), "Backpropagation applied to handwritten zip code recognition", Neural Comput., 1(4), 541-551. https://doi.org/10.1162/neco.1989.1.4.541
- Lipton, Z.C., Kale, D.C., Elkan, C. and Wetzell, R. (2015), "Learning to diagnose with LSTM recurrent neural networks", arXiv preprint arXiv:1511.03677.
- Matsugu, M., Mori, K., Mitari, Y. and Kaneda, Y. (2003), "Subject independent facial expression recognition with robust face detection using a convolutional neural network", Neural Networks, 16(5), 555-559. https://doi.org/10.1016/S0893-6080(03)00115-1
- Rafiee, J., Rafiee, M.A. and Tse, P.W. (2010), "Application of mother wavelet functions for automatic gear and bearing fault diagnosis", Exp. Syst. Appl., 37(6), 4568-4579. https://doi.org/10.1016/j.eswa.2009.12.051
- Rafiee, J., Tse, P.W., Harifi, A. and Sadeghi, M.H. (2009), "A novel technique for selecting mother wavelet function using an intelligent fault diagnosis system", Exp. Syst. Appl., 36(3), 4862-4875. https://doi.org/10.1016/j.eswa.2008.05.052
- Sawicki, J.T., Sen, A.K. and Litak, G. (2009), "Multiresolution wavelet analysis of the dynamics of a cracked rotor", Int. J. Rotat. Machinery, 2009.
- Williams, D.R.G.H.R. and Hinton, G.E. (1986), "Learning representations by back-propagating errors", Nature, 323(6088), 533-538. https://doi.org/10.1038/323533a0
- Zeiler, M.D. and Fergus, R. (2014), "Visualizing and understanding convolutional networks", In European conference on computer vision, 818-833.
- Zhang, L., Zhou, W. and Jiao, L. (2004), "Wavelet support vector machine", IEEE T. Syst. Man. Cy. B, 34(1), 34-39. https://doi.org/10.1109/TSMCB.2003.811113
- Zhou, C., Li, H., Li, D., Lin, Y. and Yi, T. (2013), "Online damage detection using pair cointegration method of time-varying displacement", Smart Struct. Syst., 12(3), 309-325. https://doi.org/10.12989/sss.2013.12.3_4.309