• Title/Summary/Keyword: vibration signal

Search Result 1,284, Processing Time 0.031 seconds

Design, Implementation and Test of Flight Model of X-Band Transmitter for STSAT-3 (과학기술위성 3호 X-대역 송신기 비행모델 설계, 제작 및 시험)

  • Seo, Gyu-Jae;Lee, Jung-Soo;Oh, Chi-Wook;Oh, Seung-Han;Chae, Jang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.461-466
    • /
    • 2012
  • This paper describes the development and test result of X-band Transmitter flight model(FM) of STSAT-3 by satellite research center(SaTReC), KAIST. The communication sub-system of STSAT-3 is consist of two different frequency band channels. S-band frequency is used for Telemetry & Command, and X-band frequency is used for mission data. Payload observations data in Mass Memory Unit (MMU) is modulated by QPSK modulator in X-band Transmitter, and then QPSK modulation signal is transmitted to antenna through transfer switch. In this Paper, we described the results of modulation, low-pass filter design, power amp development, and switch test. The FM XTU is delivered Spacecraft Assembly, Integration and Test(AIT) level through the completion of functional Test and environmental(vibration, thermal vacuum) Test successfully.

Improvement of TAOS data process

  • Lee, Dong-Wook;Byun, Yong-Ik;Chang, Seo-Won;Kim, Dae-Won;TAOS Team, TAOS Team
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.129.1-129.1
    • /
    • 2011
  • We have applied an advanced multi-aperture indexing photometry and sophisticated de-trending method to existing Taiwanese-American Occultation Survey (TAOS) data sets. TAOS, a wide-field ($3^{\circ}{\times}3^{\circ}$) and rapid photometry (5Hz) survey, is designed to detect small objects in the Kuiper Belt. Since TAOS has fast and multiple exposures per zipper mode image, point spread function (PSF) varies in a given image. Selecting appropriate aperture among various size apertures allows us to reflect these variations in each light curve. The survey data turned out to contain various trends such as telescope vibration, CCD noise, and unstable local weather. We select multiple sets of stars using a hierarchical clustering algorithm in such a way that the light curves in each cluster show strong correlations between them. We then determine a primary trend (PT) per cluster using a weighted sum of the normalized light curves, and we use the constructed PTs to remove trends in individual light curves. After removing the trend, we can get each synthetic light curve of star that has much higher signal-to-noise ratio. We compare the efficiency of the synthetic light curves with the efficiency of light curves made by previous existing photometry pipelines. Our photometric method is able to restore subtle brightness variation that tends to be missed in conventional aperture photometric methods, and can be applied to other wide-field surveys suffering from PSF variations and trends. We are developing an analysis package for the next generation TAOS survey (TAOS II) based on the current experiments.

  • PDF

Development of intelligent fault diagnostic system for mechanical element of wind power generator (지능형 풍력발전 기계적 요소 고장진단 시스템 개발)

  • Moon, Dea-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • Recently, a rapid growth of wind power system as a leading renewable energy source has compelled a number of companies to develop intelligent monitoring and diagnostic system. Such systems can detect early mechanical faults, which prevents from costly repairs. Generally, fault diagnostic system for wind turbines is based on vibration and process signal analysis. In this work, different type of mechanical faults such as mass unbalance and shaft misalignment which can always happen in wind turbine system is considered. The proposed intelligent fault diagnostic algorithm utilizes artificial neural network and Wavelet transform. In order to verify the feasibility of the proposed algorithm, mechanical fault generation experimental system manufactured by Gaon corporation is utilized.

Piezo-activated guided wave propagation and interaction with damage in tubular structures

  • Lu, Ye;Ye, Lin;Wang, Dong;Zhou, Limin;Cheng, Li
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.835-849
    • /
    • 2010
  • This study investigated propagation characteristics of piezo-activated guided waves in an aluminium rectangular-section tube for the purpose of damage identification. Changes in propagating velocity and amplitude of the first wave packet in acquired signals were observed in the frequency range from 50 to 250 kHz. The difference in guided wave propagation between rectangular- and circular-section tubes was examined using finite element simulation, demonstrating a great challenge in interpretation of guided wave signals in rectangular-section tubes. An active sensor network, consisting of nine PZT elements bonded on different surfaces of the tube, was configured to collect the wave signals scattered from through-thickness holes of different diameters. It was found that guided waves were capable of propagating across the sharp tube curvatures while retaining sensitivity to damage, even that not located on the surfaces where actuators/sensors were attached. Signal correlation between the intact and damaged structures was evaluated with the assistance of a concept of digital damage fingerprints (DDFs). The probability of the presence of damage on the unfolded tube surface was thus obtained, by which means the position of damage was identified with good accuracy.

Design and Evaluations of Underwater Hydrophone with Self Noise Suppressing Structures -Part Ⅰ. Noise Transfer Characteristics & Effects of Structure Modifications - (저 잡음 수중 청음기의 설계 방안 연구 -Ⅰ. 잡음 전달 특성 및 구조 변경 영향 -)

  • Im, Jong-In;Roh, Young-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.10-15
    • /
    • 1997
  • The hydrophones is mounted in many applications on a vibrating surface and functions as an underwater acoustic signal receiver without sensing the vibrations from the mounting surface. However, their performance is usually degraded by the interference of exterior noises such as acoustic cavitation in water stream, host structural vibration in the hull, and propeller motions. This paper describes the design and evaluation of a self noise suppressing hydrophones which shows very poor sensitivity to the external noises, first, effects of the external noise on the its receiver performance is simulated with finite element method(FEM). Second, the geometrical variations are implemented on the original structure that include additional air pockets and acoustic walls which work as acoustic shied or scatter of the noises. The results show that the effect of the external noise is the most significant when it is applied near to the bottom of the side wall of the hydrophones. The transverse noise induced by the outside water flow is isolated most effectively when a thin compliant (damping) layer combined with two air pockets is inserted to the circumference of the nose. Noise level is reduced about fifty nine percent of that of the original structure.

  • PDF

The development of laser doppler vibrometer using DPLL for the detection of ultrasonic vibration (Digital PLL을 이용한 초음파진동 측정용 레이저 도플러 진동계의 개발)

  • 김호성
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.306-311
    • /
    • 2000
  • This paper deals with the development of Laser Doppler Vibrometer (LDV) that can mea~ure the tlequency and amphlude of the ultrasonic vibralion. Hc-Ne laser (632.8 om) is used as a light source, and Michelson interferometer in winch frequency of the objective beam is shIfted by Bragg cell IS adopted The frequency modulated signal centered at 40 MHz flom the PIN diode IS amplified. down-col1vel1ed to 2.5 MHz, filtered and digiLized. The voltage output that is proportional to the velocity of the vibratwg surface is obtawed using digItal PLL. A microprocessor is used to extract the frequcncy aud amplitude of the vibratIOn from the voltage output. It is found that the developed LDV can measure up to 300 kHz vibratIOn and the mlillmUITI measurable amplitude is I nm at 300 kHz. We believe thatlhis LDV can be used to measure the vibratIOn of the heavy electric maclllnery and micro-size structures. tures.

  • PDF

The Study of MAC protocol for efficient Wireless Sensor Network (Wireless 센서 네트워크를 위한 MAC 프로토콜에 관한 연구)

  • Lee, Woo-Chul;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.517-520
    • /
    • 2005
  • Wireless sensor network combines sensing and computing technology which can sense light, temperature, vibration, magnetic field and wind etc, as each purpose of using those. Wireless nodes operate signal processing skill which has proceeded sensed information from the sensor, transmission which makes information reached to observer and limited energy managing skill which is needed on account of using battery to operate wireless. To make responsible measuring and sensing out of them, efficient energy management is so important to maintain life time of network. In this paper, after explaining CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance) traditional wireless MAC protocol, and ER-MAC(Energy Rate Medium Access Control) which are not managing resource of hardware but MAN(Medium Access Control), data-link layer out of OSI 7 layer. We would like to analyze those efficiency of power saving comparing with each protocol.

  • PDF

Proposal of a piezoelectric floating mass transducer for implantable middle ear hearing devices (이식형 인공중이를 위한 압전 플로팅 매스 트랜스듀서의 제안)

  • Lee, Chang-Woo;Kim, Min-Kyu;Park, Il-Yong;Song, Byung-Seop;Roh, Yong-Rae;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.322-330
    • /
    • 2005
  • A new type of transducer, piezoelectric floating mass transducer (PFMT) which has advantages of piezoelectric and electromagnetic transducer has been proposed and implemented for the implantable middle ear hearing devices. By the uneven bonding of piezoelectric material to the inner bottom of transducer case, the PFMT can vibrate back-and-forth along the longitudinal axis of the transducer even though the piezoelectric material within the cylindrical case produces only the bilateral expansion and contraction according to the applied electrical signal. To improve efficiency of the PFMT, the multi-layered piezoelectric material has been adapted. The small number of components in the PFMT enables the simple manufacturing and the easy implanting into the middle ear. In order to examine the characteristics of vibration, mechanical modeling and finite element analyses of the proposed transducer have been performed. From the result of theoretical analyses and the measured data from the experiment, it is verified that the implemented PFMT can be used in implantable middle ear hearing devices.

Signal-based Fault Diagnosis Algorithm of Control Surfaces of Small Fixed-wing Aircraft (소형 고정익기의 신호기반 조종면 고장진단 알고리즘)

  • Kim, Jihwan;Goo, Yunsung;Lee, Hyeongcheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1040-1047
    • /
    • 2012
  • This paper presents a fault diagnosis algorithm of control surfaces of small fixed-wing aircraft to reduce maintenance cost or to improve repair efficiency by estimation of fault occurrence or part replacement periods. The proposed fault diagnosis algorithm consists of ANPSD (Averaged Normalized Power Spectral Density), PCA (Principle Component Analysis), and GC (Geometric Classifier). ANPSD is used for frequency-domain vibration testing. PCA has advantage to extract compressed information from ANPSD. GC has good properties to minimize errors of the fault detection and isolation. The algorithm was verified by the accelerometer measurements of the scaled normal and faulty ailerons and the test results show that the algorithm is suitable for the detection and isolation of the control surface faults. This paper also proposes solutions for some kind of implementation problems.

Design of Network-Based Induction Motors Fault Diagnosis System Using Redundant DSP Microcontroller with Integrated CAN Module (DSP 마이크로컨트롤러를 사용한 CAN 네트워크 기반 유도전동기고장진단 시스템 설계)

  • Yoon, Chung-Sup;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.5
    • /
    • pp.80-86
    • /
    • 2005
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is includes of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module processes the stator current, voltage, temperatures, vibration signal of the motor.