• Title/Summary/Keyword: vibration patterns

Search Result 349, Processing Time 0.022 seconds

Vibration and Noise Measurement on the Driving System of Electric Train for Safety Diagnosis (전기동차 구동장치의 안전진단을 위한 진동.소음 측정)

  • 최연선;이봉현;최경긴;유원희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.210-215
    • /
    • 1997
  • Safety diagnosis on the driving system of electric train is performed using the vibration and noise signals of running railway train. Safety diagnosis is tried on the viewpoints of the appreciation of superannuation and the fault diagnosis of motor, reduction gear and boggie. The appreciation of superannuation is checked by the rms vibration levels of driving parts and the fault diagnosis is done by analyzing the frequencies of the vibration signals. The methods of measuring and analyzing the signals are decided on the basis of field 1-measured signals. The results shows that the vibration levels of each parts increase as the train goes older and each parts have their own frequency patterns of the vibration. As the results, the vibration and noise can be utilized successfully for the safety diagnosis of the driving part of electric train.

  • PDF

Development of Sensory Feedback System for Myoelectric Prosthetic Hand (전동의수 사용자를 위한 감각 측정 및 전달 시스템 개발)

  • Bae, Ju-Hwan;Jung, Sung Yoon;Kim, Shinki;Mun, Museong;Ko, Chang-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.851-856
    • /
    • 2015
  • This study aimed to develop a sensory feedback system which could measure force and temperature for the user of myoelectric prosthetic hands. The Sensory measurement module consisted of a force sensing resistor to measure forces and non-contact infrared temperature sensor. These sensors were attached on the fingertips of the myoelectric prosthetic hand. The module was validated by using standard weights corresponding to external force and a Peltier module. Sensory transmission module consisted of four vibration motors. Eight vibration patterns were generated by combining motion of each vibration motor and were dependent on kinds and/or magnitude. The module was verified by using standard weigts and water at varying temperatures. There were correlations of force and temperature between the sensory measurement module and standard weight and water. Additionally, exact vibration patterns were generated, indicating the efficacy of the sensory feedback system for the myoelectric prosthetic hand.

An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models

  • Hadji, Lazreg;Zouatnia, Nafissa;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.231-241
    • /
    • 2019
  • In this paper, a new higher order shear deformation model is developed for static and free vibration analysis of functionally graded beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. Different patterns of porosity distributions (including even and uneven distribution patterns, and the logarithmic-uneven pattern) are considered. In addition, the effect of different micromechanical models on the bending and free vibration response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present higher-order shear deformation model, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain displacement, stresses and frequencies, and the numerical results are compared with those available in the literature. A comprehensive parametric study is carried out to assess the effects of volume fraction index, porosity fraction index, micromechanical models, mode numbers, and geometry on the bending and natural frequencies of imperfect FG beams.

Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments

  • Zhao, Jing-Lei;Chen, Xu;She, Gui-Lin;Jing, Yan;Bai, Ru-Qing;Yi, Jin;Pu, Hua-Yan;Luo, Jun
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.797-808
    • /
    • 2022
  • This paper presents an investigation on the free vibration characteristics of functionally graded nanocomposite double-beams reinforced by single-walled carbon nanotubes (SWCNTs). The double-beams coupled by an interlayer spring, resting on the elastic foundation with a linear layer and shear layer, and is simply supported in thermal environments. The SWCNTs gradient distributed in the thickness direction of the beam forms different reinforcement patterns. The materials properties of the functionally graded carbon nanotube-reinforced composites (FG-CNTRC) are estimated by rule of mixture. The first order shear deformation theory and Euler-Lagrange variational principle are employed to derive the motion equations incorporating the thermal effects. The vibration characteristics under several patterns of reinforcement are presented and discussed. We conducted a series of studies aimed at revealing the effects of the spring stiffness, environment temperature, thickness ratios and carbon nanotube volume fraction on the nature frequency.

Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment

  • Xu, Chen;Jing-Lei, Zhao;Gui-Lin, She;Yan, Jing;Hua-Yan, Pu;Jun, Luo
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.641-652
    • /
    • 2022
  • Fluid-conveying tubes are widely used to transport oil and natural gas in industries. As an advanced composite material, functionally graded carbon nanotube-reinforced composites (FG-CNTRC) have great potential to empower the industry. However, nonlinear free vibration of the FG-CNTRC fluid-conveying pipe has not been attempted in thermal environment. In this paper, the nonlinear free vibration characteristic of functionally graded nanocomposite fluid-conveying pipe reinforced by single-walled carbon nanotubes (SWNTs) in thermal environment is investigated. The SWCNTs gradient distributed in the thickness direction of the pipe forms different reinforcement patterns. The material properties of the FG-CNTRC are estimated by rule of mixture. A higher-order shear deformation theory and Hamilton's variational principle are employed to derive the motion equations incorporating the thermal and fluid effects. A two-step perturbation method is implemented to obtain the closed-form asymptotic solutions for these nonlinear partial differential equations. The nonlinear frequencies under several reinforcement patterns are presented and discussed. We conduct a series of studies aimed at revealing the effects of the flow velocity, the environment temperature, the inner-outer diameter ratio, and the carbon nanotube volume fraction on the nature frequency.

Analysis of stiffened Al/SiC FGM plates with cutout under uniaxial and localized in-plane edge loadings

  • P. Balaraman;V.M. Sreehari
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.601-615
    • /
    • 2024
  • Effect of ring and straight stiffeners in the buckling as well as vibration characteristics of metal-ceramic functionally graded plates with cutout subjected to various uniaxial and localized in-plane compressive edge loadings was explored in the present work. In the current work, the distinguishing characteristics of metal and ceramic are merged in a single volume, and power law was used for estimating the material composition throughout thickness. Buckling and free vibration characteristics were studied initially for unstiffened Al/SiC functionally graded plates with cutout. Subsequently, the influence of cutout ratio on buckling load as well as natural frequency for different power law indices was discussed. The functionally graded plate was stiffened by three different stiffener patterns, namely; ring stiffener, straight stiffener, as well as a combination of the ring and the straight stiffener, to enhance the buckling as well as vibration characteristics. The effect of stiffener depth ratio for different stiffener patterns was also presented for functionally graded plates having different cutout sizes under various loading conditions. Such studies on functionally graded material have potential applications in a variety of technological fields including the aerospace and defense sectors.

An Analysis and a 3D Prediction of vibration modes in a Laser Doppler (레이저 도플러의 진동에 대한 분석과 3차원 예측연구)

  • Baik, Ran
    • Journal of Digital Contents Society
    • /
    • v.11 no.2
    • /
    • pp.117-122
    • /
    • 2010
  • This is a study on the analysis of vibration mode of a laser doppler. We measure the vibration mode of a doppler and analyze each component, and want to estimate three dimensional properties from 2-dimensional data. The vibration mode relies on a range detector that uses a distance sensor. Since the outputs are determined by the measured distance, we want to study how 3-dimensional vibration mode is generated from 2-dimensional ones. The study will include the patterns of generating a 3-dimensional vibration mode as well as the relationship between the distance and the vibration mode.

Vibration Tactile Foreign Language Learning: The Possibility of Embodied Instructional Media

  • JEONG, Yoon Cheol
    • Educational Technology International
    • /
    • v.14 no.1
    • /
    • pp.41-53
    • /
    • 2013
  • On the basis of two premises and embodied cognition theory, the vibration tactile learning is proposed as an effective method for foreign language learning. The premises are: the real nature of language is sound and the source of sound is vibration. According to embodied cognition theory, cognition is inherently connected to bodily sensation rather than metaphysical and independent. As a result, the vibration tactile learning is: people are able to learn foreign language better by listening to sound and experiencing its vibration through touch rather than solely listening to sound. The effectiveness of vibration tactile learning is tested with two instructional media theories: media comparison and media attribute. For the comparison, an experiment is conducted with control and experimental groups. The attributes of vibration tactile media are investigated in points of relationships with the learning process. The experiment results indicate a small effect on the increased mean score. Three kinds of relationships are found between the media attribute and learning process: enforced stimulus, facilitated pronunciation, and assimilation of resonance to sound patterns through touch. Finally, this paper proposes a new theoretical development for instructional media research: an embodied cognition based media research and development.

Haptic Joystick Implementation using Vibration Pattern Algorithm (진동패턴 알고리즘을 적용한 조이스틱의 햅틱 구현)

  • Noh, Kyung-Wook;Lee, Dong-Hyuk;Han, Jong-Ho;Park, Sookhee;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.605-613
    • /
    • 2013
  • This research proposes a vibration pattern algorithm to implement the haptic joystick to control a mobile robot at the remote site without watching the navigation environment. When the user cannot watch the navigation environment of the mobile robot, the user may rely on the haptic joystick solely to avoid obstacles and to guide the mobile robot to the target. To generate vibration patterns, there is a vibration motor at the bottom of the joystick which is held by the user to control the motion direction of the mobile robot remotely. When the mobile robot approaches to an obstacle, a pattern of vibration is generated by the motor, and by feeling the vibration pattern which is determined by the relative position of the mobile robot to the obstacle, the user can move the joystick to avoid the collision to the obstacle for the mobile robot. To generate the vibration patterns to convey the relative location of the obstacle near the mobile robot to the user, Fuzzy interferences have been utilized. To measure the distance and location of the obstacle near the mobile robot, ultrasonic sensors with the ring structure have been adopted and they are attached at the front and back sides of the mobile robot. The precise location of the obstacle is obtained by fusing the multiple data from ultrasonic sensors. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.