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An Analysis and a 3D Prediction of vibration modes in a Laser
Doppler

Ran Baik*

Abstract

This is a study on the analysis of vibration mode of a laser doppler. We measure the vibration
mode of a doppler and analyze each component, and want to estimate three dimensional properties
from 2-dimensional data. The vibration mode relies on a range detector that uses a distance sensor.
Since the outputs are determined by the measured distance, we want to study how 3-dimensional
vibration mode is generated from 2-dimensional ones. The study will include the patterns of
generating a 3-dimensional vibration mode as well as the relationship between the distance and the

vibration mode.
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A Laser Doppler(LD) is a velocity transducer
with scanning capability. The scanner aims

components, eigenvalue, eigenvector

I. INTRODUCTION applications in the research laboratory and
industry for dynamic testing, modal analysis,
noise control and damage identification.
(Figure 1) shows the definitions of the
coordinate systems used in this paper.

the laser beam at desired measurement points

on the object. The LD offers many advantages

over

dynamic measurements. It has found many

the conventional accelerometer in
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A Cartesian coordinate system called the
OXYZ, (global

object coordinate system OX)Y 7,
coordinate system) is established. The points
of interest on the object are defined with
respect to this coordinate system, which
means the object coordinates (z,,y,,2,) of the
points of interest are known. Although the
object coordinate system is placed on the
object in Figure 1, it can be put anywhere in
space. Another Cartesian coordinate system
called the laser coordinate system O, X,Y;Z,

is also established. It is placed inside the laser
head. [5, 6, 7]

In our laser-based six degree—of-freedom
mobility measurement system, the LD is used
for the velocity measurement. The measured
velocity is a vector along the line-of-sight of
the laser beam. The vector direction of the
velocity should be described with respect to
the object coordinate system. The direction of
the line-of-sight cannot be directly measured
by the LD, however, this direction can be
obtained once the pose of the laser coordinate
system is obtained with respect to the object
coordinate system. [8, 9, 10]

Furthermore, in engineering there is a need
to be able to measure the vibrations of
three-dimensional bodies, and experimental
techniques which can measure motion in only
a single direction are not always satisfactory.
Optical techniques have been shown to have
certain practical advantages for vibration
analysis. Generally, this involves obtaining a
minimum of three sets of readings, each
measuring components in a particular direction
known as the sensitivity vector. The principle
disadvantage of this method is that it is not
possible to measure orthogonal components
independently; hence, to calculate a resultant
vector displacement it is necessary to make a
minimum of three sets of readings and solve
them simultaneously. This can be
generally

computationally intensive and

requires extra redundant data to avoid large
computational errors. What is needed is an
optical technique that is capable of measuring
orthogonal components of vibration
independently. In our work, it will show how
to approach to measure orthogonal components
independently and try to find what is the

relationship with the components.

II. Main Principles of the
Vibration Analysis

2.1. An analysis of components of the
measured velocity

In 3-dimension case, we want to measure the
from 3 LDs and

components of the measured velocity. If it is

velocity obtain each
obtained the vibrating components of each
axis, it is calculated the characteristic of the
vibration using the given algorithms, Peak
picking method, quadrature picking method [1,
2, 4]. However, to calculate the vibrating
mode and operating Deflection Shape in the
3-dimension, we need an analysis of how is
related with each component of three axes at
each measured point.

Now, at the first step it is considered to
measure the each component of the axes, it is
concrete to understand it. This outline of the
concept is as follows (Figure 2).
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Figure 2. A direction component of two axes using two sensors

Figure 3. Distribution of vectors when the angle is same
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From two cases, it is obtained the components
of axes on 2-dimension with 2 LDs. The

input vectors is considered as characteristic

vectors.
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Figure 4. Distribution of vectors when the angle is different

The covariance matrix X' is obtained from the
characteristic vectors. (Figure 3, 4) show the
distribution of the expecting each components
and some related vectors from input measured
velocity from LDs.

The eigenvalues of the covariance matrix X
give an approach the components on the
vibrating object. It is expected some criterion
of the
eigenvectors of the given covariance matrix X
without the angle of the LD. It is shown
some criterion to approach the components on

component of axes from the

the vibrating object with the velocity of LD
(random velocities and random angles)

The aim here is to extend the technique to
examine three dimensional vibrating structures,
develop the theory to support the analysis, and
present the pattern study of the vibration
mode. Finally, the areas of application of this
technique are discussed, together with its

potential for development and its limitations.

2.2. Coordinate transformation

A spatial point P can be fully determined by
its object coordinates (zpoYprzpo). It can
also be fully determined by its laser
coordinates (zp;, yp; zp;). The relationship
between the object coordinates and the laser

coordinates is the coordinate transformation.

ZTp Zp
Yp :{T}?+{R}f Yp 1)
Zpl o Zp|,

where {717 is the translation vector. It is the
coordinates of the origin O,, measured in the
object coordinate system, i.e. the position of
{R}S is the

rotation matrix, i.e. the orientation of the laser

the laser coordinate system.

coordinate system. Note that the rotation
matrix 1is an orthogonal matrix and its
determinant is positive one. Thus, the rotation
defined by three
variables. The pose of the LD is defined as

matrix is independent

the position and orientation of the laser

coordinate system, ie. {7}9 and {R}?.

2.3. Transformation of the characteristic
space and pattern study

The characteristic vectors is considered as
components with the velocity that is measured
by each LD. On the 3-dimension, denote the
distance of each group by d(y,Y¥) where a

pattern is y=(z,zy2;)7 and a class is

Y= {y;,p -y, }. Define the distance such that
. Lyn e L5y
&*(y.Y) :_Zd (yvyi) :_Ez($]’_$i]‘)~

ni=1 ni=1j=1
The classification is determined where is
located in LD and measured the velocity of
the characteristic vectors. To visualize the
characteristic vectors, it is to transform the
characteristic space. The transformation of the
characteristic space is to generating mapping
from characteristic space to another new
space. A vector z of a characteristic space is
transformed to y where y= Ax. The matrix A
is dependent on the size of =z and y. It is
called a transformation with respect to x and
y. It is a need to find the transformation for
our problem. To extract the characteristic
pattern, it must be located close each other in
the similar characteristic vectors. Furthermore,
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what it is distinguished among them as
expected needs to transform the characteristic
space to minimize the distance of each vectors
in a group. Define the distance from any two
vectors in a group by D(X) such that
DA(X) :223](ak)2
i=1

A distance from any two vectors in a group
is to calculate by sum of variance from
characteristic pattern that composed a group.
The larger the sum of variance is, the longer
the distance from any two vectors in a group
is. This information give a standard basis to
transform from a space to the other space to
distinguish easily. It is a outline by definition
for distance from any two vectors in a group
as follows.

DY X) =2 (w,0,)? (2)

3
It is obtained w, under the condition Y w, =1
i=1

to minimize the distance.
This restricted condition is
uniformly to a normalized unit cubic of the

preserved

characteristic space. It is obtained to minimize

it from (1) under the equation (2) by the

method of Lagrange undetermined multiplicity.
3 3

L=2Y(w;0,)*—a(Djw,;—1) (3)

i=1 i=1

Therefore, the equation (3) can be partially

derivative with respect to w,; to obtain the

extreme values of L and the result can be

equal to zero.

oL
— =4w,or—a=0,1<i<3
ow;;
From above the result, it is obtained w;, :%
0;

by w;. If the pattern z is composed of n

—characteristic such that z,z,--,x,, it is a

1 ny

representation as = (z,,xy -z,) ' ER". Let

v={v,vyv,} be a normalized orthogonal

basis and a matrix A4 is composed by

Uy, Uyt o,v, Where the size of A is  nXn.

Then it conclude that A7A=AAT=7 and
each characteristic of the normalized

orthogonal basis is brought out

Ulvf-l- ety =n

{“iT v =0

nVn
By these properties, arbitrary pattern x can be
expressed as a unique linear combination of
normalized or the orthogonal basis. The
eigenvalues of the covariance of the pattern,
A=A =\, by
ordering and each normalized eigen vector p;

Y=E(zz7), is expressed

corresponding to each eigen value A, has the

properties such that {Z w; = A\g; . Therefore,
Ml‘TNf =1

a set of the eigen vectors, = {puy iy -4, } 1is

composed of a normalized orthogonal basis

and any pattern x can be expanded as

T =2y + 2oty oot 2, With p. In our work,

it is considered n=3.

III. AN EXTENSION OF THE THREE
DIMENSIONAL VIBRATION
MEASUREMENTS

There are many situations in vibration
analysis where it is necessary or desirable to
make three-dimensional measurements. By
using three different illumination geometries
around a single imaging system, LD can be
used to measure the orthogonal components of
vibration amplitude independently.

These can be combined to determine the
three—dimensional amplitude and mode shape.
Examples of experimental results are presented
for volume vibrations of a thick cylinder and

observation of in—-plane modes in a thin plate.
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It is considered 3 different velocities and

different angles as follows.

Figure 5. Components of three axes using three laser beams

If a LD is located on the xz-axes, the input
be

When the same concept applies to

vector can presented by (0, v,cosf,,

v,sind,).
both y-axes and z-axes, it will be obtained
(vyc080;, 0, v,sind,), (v,c080;, v,5in6;,0).

From these input velocities, some criterion
region of the components is obtained. Figure 6
is shown all eigenvectors and some expected

region of the criterion of the components.

From those experiments of two dimensional

and three dimensional cases, we apply the

modified newton method as follows [3]:
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Figure 6. Distribution of vectors when each angle and velocity are different

Modified Newton’s Algorithm

(1)

Set «y; (1)

ol (1)

(1) ( )

and ;. ) is an initial
(1)

(1) and z;’, k=

eigenpairs where «;, 1,-m

are the diagonal entries of the covariance
that the

components on the vibrating object and

matrix X give an approach
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{617627"'7671}
For k=1,...,n do (in parallel)
For j=1,... do until convergence

(i) Solve for ygfj), (agj)]— Z)yg) = x,(i.j)

(i) Compute ﬂ,(cj) = J;Ej)r . y§j)

(iii) Compute 5§>= |y§‘;j)|2-

(iv) Compute asi:jﬂ) = %j)ygj)
B’

(v) Compute aéﬁl) = aﬁj) -

o

It is an advantage to get all eigenpairs

simultaneously without consecutive computing.

IV. CONCLUSIONS

W  conclude three main result. First we
analyze the vibration mode and we study the
relation between the eigenvalues of the

covariance matrix Y that give an approach
the components on the vibrating object and

vibration velocity in section 2. It is estimated

the bound criterion for a  vibration
measurement. It can be shown that the
eigenvector corresponding to the smallest

eigenvalue of X is a approaching to the
component of the vibrating object. From these
bound

eigenvector.

obtained
the

Suppose vy, v, are input vectors, [l < llvl

experiments, it is some

criterion for error from

and p.;, is the eigenvector corresponding the
smallest eigenvalue then it is the expecting
that
the

component vector cmp such

Let the of

component be 6 and the angle of the eigen

oyl < llempll < [yl angle

% . These are

four different experiments [Figure 7 and 8] for

vector p:. be p, then l9—pl <

Figure 3 and Figure 4 in section 2.1 with
input vectors n=100. Thirdly, we extend and

predict 3-dimensional case through
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2-dimensional case’s properties in section 3.

Figure 7. Distributions of error of dzpree between the component and the
approaching components

Figure 8. Distributions of error of degrez between the component and the
approaching components
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