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레이저 도플러의 진동에 대한 분석과 3차원 예측연구

백 란*

요 약
본 연구는 레이저 도플러의 진동모드에 대한 분석연구이다. 도플러에서 생성되는 진동모드를 측정하

여 각 성분을 분석하여 2차원 연구로부터 3차원을 예측 할 수 있는 성질들을 연구하고자 한다. 진동모

드는 범위 탐지기(거리 측정 센서)에 의존하고 있다. 즉, 측정거리에 의해 결정되고 있으므로, 생성되는

변수들로부터 2차원에서부터 3차원에서의 진동모드가 어떻게 생성되는지, 어떤 특성의 패턴으로 나타나

는지를 연구함과 더불어, 진동모드와 거리와의 관계도 아울러 연구한다.

An Analysis and a 3D Prediction of vibration modes in a Laser

Doppler

Ran Baik*

Abstract

This is a study on the analysis of vibration mode of a laser doppler. We measure the vibration

mode of a doppler and analyze each component, and want to estimate three dimensional properties

from 2-dimensional data. The vibration mode relies on a range detector that uses a distance sensor.

Since the outputs are determined by the measured distance, we want to study how 3-dimensional

vibration mode is generated from 2-dimensional ones. The study will include the patterns of

generating a 3-dimensional vibration mode as well as the relationship between the distance and the

vibration mode.

Keywords : Laser Doppler, object coordinates, laser coordinate system, orthogonal          

         components, eigenvalue, eigenvector

I. INTRODUCTION

A Laser Doppler(LD) is a velocity transducer

with scanning capability. The scanner aims

the laser beam at desired measurement points

on the object. The LD offers many advantages

over the conventional accelerometer in

dynamic measurements. It has found many
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(Figure 1) shows the definitions of the

coordinate systems used in this paper.
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A Cartesian coordinate system called the

object coordinate system  , (global

coordinate system) is established. The points

of interest on the object are defined with

respect to this coordinate system, which

means the object coordinates () of the

points of interest are known. Although the

object coordinate system is placed on the

object in Figure 1, it can be put anywhere in

space. Another Cartesian coordinate system

called the laser coordinate system 

is also established. It is placed inside the laser

head. [5, 6, 7]

In our laser-based six degree-of-freedom

mobility measurement system, the LD is used

for the velocity measurement. The measured

velocity is a vector along the line-of-sight of

the laser beam. The vector direction of the

velocity should be described with respect to

the object coordinate system. The direction of

the line-of-sight cannot be directly measured

by the LD, however, this direction can be

obtained once the pose of the laser coordinate

system is obtained with respect to the object

coordinate system. [8, 9, 10]

Furthermore, in engineering there is a need

to be able to measure the vibrations of

three-dimensional bodies, and experimental

techniques which can measure motion in only

a single direction are not always satisfactory.

Optical techniques have been shown to have

certain practical advantages for vibration

analysis. Generally, this involves obtaining a

minimum of three sets of readings, each

measuring components in a particular direction

known as the sensitivity vector. The principle

disadvantage of this method is that it is not

possible to measure orthogonal components

independently; hence, to calculate a resultant

vector displacement it is necessary to make a

minimum of three sets of readings and solve

them simultaneously. This can be

computationally intensive and generally

requires extra redundant data to avoid large

computational errors. What is needed is an

optical technique that is capable of measuring

orthogonal components of vibration

independently. In our work, it will show how

to approach to measure orthogonal components

independently and try to find what is the

relationship with the components.

II. Main Principles of the

Vibration Analysis

2.1. An analysis of components of the

measured velocity

In 3-dimension case, we want to measure the

velocity from 3 LDs and obtain each

components of the measured velocity. If it is

obtained the vibrating components of each

axis, it is calculated the characteristic of the

vibration using the given algorithms, Peak

picking method, quadrature picking method [1,

2, 4]. However, to calculate the vibrating

mode and operating Deflection Shape in the

3-dimension, we need an analysis of how is

related with each component of three axes at

each measured point.

 Now, at the first step it is considered to
measure the each component of the axes, it is

concrete to understand it. This outline of the

concept is as follows (Figure 2).
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From two cases, it is obtained the components

of axes on 2-dimension with 2 LDs. The

input vectors is considered as characteristic

vectors.

The covariance matrix  is obtained from the

characteristic vectors. (Figure 3, 4) show the

distribution of the expecting each components

and some related vectors from input measured

velocity from LDs.

The eigenvalues of the covariance matrix 

give an approach the components on the

vibrating object. It is expected some criterion

of the component of axes from the

eigenvectors of the given covariance matrix 

without the angle of the LD. It is shown

some criterion to approach the components on

the vibrating object with the velocity of LD

(random velocities and random angles)

The aim here is to extend the technique to

examine three dimensional vibrating structures,

develop the theory to support the analysis, and

present the pattern study of the vibration

mode. Finally, the areas of application of this

technique are discussed, together with its

potential for development and its limitations.

2.2. Coordinate transformation

A spatial point P can be fully determined by

its object coordinates  . It can

also be fully determined by its laser

coordinates    . The relationship

between the object coordinates and the laser

coordinates is the coordinate transformation.

where 
 is the translation vector. It is the

coordinates of the origin , measured in the

object coordinate system, i.e. the position of

the laser coordinate system. 
 is the

rotation matrix, i.e. the orientation of the laser

coordinate system. Note that the rotation

matrix is an orthogonal matrix and its

determinant is positive one. Thus, the rotation

matrix is defined by three independent

variables. The pose of the LD is defined as

the position and orientation of the laser

coordinate system, i.e. 
 and 

.

2.3. Transformation of the characteristic

space and pattern study

The characteristic vectors is considered as

components with the velocity that is measured

by each LD. On the 3-dimension, denote the

distance of each group by  where a

pattern is   
 and a class is

 ⋯. Define the distance such that

  


  



  


  




 



 .

The classification is determined where is

located in LD and measured the velocity of

the characteristic vectors. To visualize the

characteristic vectors, it is to transform the

characteristic space. The transformation of the

characteristic space is to generating mapping

from characteristic space to another new

space. A vector  of a characteristic space is

transformed to  where  . The matrix 

is dependent on the size of  and  . It is

called a transformation with respect to  and

. It is a need to find the transformation for

our problem. To extract the characteristic

pattern, it must be located close each other in

the similar characteristic vectors. Furthermore,
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what it is distinguished among them as

expected needs to transform the characteristic

space to minimize the distance of each vectors

in a group. Define the distance from any two

vectors in a group by  such that

   
  






A distance from any two vectors in a group

is to calculate by sum of variance from

characteristic pattern that composed a group.

The larger the sum of variance is, the longer

the distance from any two vectors in a group

is. This information give a standard basis to

transform from a space to the other space to

distinguish easily. It is a outline by definition

for distance from any two vectors in a group

as follows.

   
  




 (2)

It is obtained  under the condition 
  



 

to minimize the distance.

This restricted condition is preserved

uniformly to a normalized unit cubic of the

characteristic space. It is obtained to minimize

it from (1) under the equation (2) by the

method of Lagrange undetermined multiplicity.

  
  






  



 (3)

Therefore, the equation (3) can be partially

derivative with respect to  to obtain the

extreme values of  and the result can be

equal to zero.




 

  ≤ ≤ 

From above the result, it is obtained  





by  . If the pattern  is composed of 

-characteristic such that ⋯, it is a

representation as   ⋯
∈ . Let

  ⋯ be a normalized orthogonal

basis and a matrix  is composed by

⋯ where the size of  is ×.

Then it conclude that     and

each characteristic of the normalized

orthogonal basis is brought out


  


  ⋯ 
 

.

By these properties, arbitrary pattern  can be

expressed as a unique linear combination of

normalized or the orthogonal basis. The

eigenvalues of the covariance of the pattern,

 , is expressed  ≥ ≥⋯ by

ordering and each normalized eigen vector 

corresponding to each eigen value  has the

properties such that   


  

. Therefore,

a set of the eigen vectors,  ⋯ is

composed of a normalized orthogonal basis

and any pattern  can be expanded as

  ⋯ with . In our work,

it is considered  .

III. AN EXTENSION OF THE THREE

DIMENSIONAL VIBRATION

MEASUREMENTS

There are many situations in vibration

analysis where it is necessary or desirable to

make three-dimensional measurements. By

using three different illumination geometries

around a single imaging system, LD can be

used to measure the orthogonal components of

vibration amplitude independently. 
These can be combined to determine the

three-dimensional amplitude and mode shape.

Examples of experimental results are presented

for volume vibrations of a thick cylinder and

observation of in-plane modes in a thin plate.
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It is considered 3 different velocities and

different angles as follows.

If a LD is located on the -axes, the input

vector can be presented by  cos
sin . When the same concept applies to
both -axes and -axes, it will be obtained

cos  sin cos sin  .
From these input velocities, some criterion

region of the components is obtained. Figure 6

is shown all eigenvectors and some expected

region of the criterion of the components.

From those experiments of two dimensional

and three dimensional cases, we apply the

modified newton method as follows [3]:

Modified Newton's Algorithm

Set 
 
and 

  
 

   is an initial

eigenpairs where 
 
and 

 
,   ⋯

are the diagonal entries of the covariance

matrix  that give an approach the

components on the vibrating object and

⋯

For   … do (in parallel)

For   … do until convergence

(i) Solve for 
 

 
  



(ii) Compute 
  

⋅


(iii) Compute


 



(iv) Compute 
   







(v) Compute 
     

  





It is an advantage to get all eigenpairs

simultaneously without consecutive computing.

IV. CONCLUSIONS

W conclude three main result. First we

analyze the vibration mode and we study the

relation between the eigenvalues of the

covariance matrix  that give an approach

the components on the vibrating object and

vibration velocity in section 2. It is estimated

the bound criterion for a vibration

measurement. It can be shown that the

eigenvector corresponding to the smallest

eigenvalue of  is a approaching to the

component of the vibrating object. From these

experiments, it is obtained some bound

criterion for error from the eigenvector.

Suppose   are input vectors, ≤ 

and min is the eigenvector corresponding the
smallest eigenvalue then it is the expecting

component vector  such that

≤ ≤ . Let the angle of the

component be  and the angle of the eigen

vector min be , then  ≤ 


. These are

four different experiments [Figure 7 and 8] for

Figure 3 and Figure 4 in section 2.1 with

input vectors  . Thirdly, we extend and

predict 3-dimensional case through
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2-dimensional case's properties in section 3.
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