• Title/Summary/Keyword: vibration modes

Search Result 1,277, Processing Time 0.027 seconds

Effect of boundary conditions on modal parameters of the Run Yang Suspension Bridge

  • Li, Zhijun;Li, Aiqun;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.905-920
    • /
    • 2010
  • Changes in temperature, loads and boundary conditions may have effects on the dynamic properties of large civil structures. Taking the Run Yang Suspension Bridge as an example, modal properties obtained from ambient vibration tests and from the structural health monitoring system of the bridge are used to identify and evaluate the modal parameter variability. Comparisons of these modal parameters reveal that several low-order modes experience a significant change in frequency from the completion of the bridge to its operation. However, the correlation analysis between measured modal parameters and the temperature shows that temperature has a slight influence on the low-order modal frequencies. Therefore, this paper focuses on the effects of the boundary conditions on the dynamic behaviors of the suspension bridge. An analytical model is proposed to perform a sensitivity analysis on modal parameters of the bridge concerning the stiffness of expansion joints located at two ends of bridge girders. It is concluded that the boundary conditions have a significant influence on the low-order modal parameters of the suspension bridge. In addition, the influence of vehicle load on modal parameters is also investigated based on the proposed model.

A Study on Analysis of Dynamic characteristics of a High-Agility Satellite including Flexibility of a Solar panel (태양전지판의 유연성에 의한 고기동 위성의 동특성 분석 연구)

  • Kim, Yongha;Kang, Kyunghan;Kim, Hyunduk;Park, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • Recently, there are a number of studies over dynamic analysis for minimizing vibration of flexible structures such as solar panel for agility of high-agility satellite. The traditional studies perform dynamic analysis of a solar panel assumed as rigid structure since the stiffness of solar panel is higher than the stiffness of solar panel's hinge spring. However, there are vibrations that have modes of bending and torsion when high-agility satellite rotate speedily. This vibrations result in delaying safety time of satellite or degrading image quality. This paper presents dynamic analysis's technique of satellites including the spring hinge of solar panel and flexible structural solar panel's effects described as the linear equation of motion using Lagrange's theorem, and verifies the validity of an established dynamic analysis's technique of satellites by comparing the finite element method. In addition high-agility satellite's dynamic characteristics of a torque profile are analyzed from the established dynamic analysis's technique of satellites.

Structural intensity analysis of a large container carrier under harmonic excitations of propulsion system

  • Cho, Dae-Seung;Kim, Kyung-Soo;Kim, Byung-Hwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.87-95
    • /
    • 2010
  • The structural intensity analysis, which calculates the magnitude and direction of vibrational energy flow from vibratory velocity and internal force at any point of a structure, can give information on dominant transmission paths, positions of sources and sinks of vibration energy. This paper presents a numerical simulation system for structural intensity analysis and visualization to apply for ship structures based on the finite element method. The system consists of a general purpose finite element analysis program MSC/Nastran, its pre- and post-processors and an in-house program module to calculate structural intensity using the model data and its forced vibration analysis results. Using the system, the structural intensity analysis for a 4,100 TEU container carrier is carried out to visualize structural intensity fields on the global ship structure and to investigate dominant energy flow paths from harmonic excitation sources to superstructure at resonant hull girder and superstructure modes.

Influence of Loading Sizes on Natural Frequency of Composite Laminates (복합적층판의 고유진동수에 대한 하중 크기의 영향)

  • Han, Bong-Koo;Suck, Ju-Won
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • A method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross sections and arbitrary boundary conditions was developed. The result is compared with that of the beam theory. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. In this paper, the relation between the applied loading sizes and the natural frequency of vibration of some structural elements is presented. The results of application of this method to steel bridge and reinforced concrete slab bridge by using specially orthotropic plate theory is presented.

Inertia Latch Design for Micro Optical Disk Drives (초소형 광디스크 드라이브용 관성 래치 설계)

  • 김경호;김유성;이승엽;유승헌;김수경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1157-1164
    • /
    • 2003
  • Dynamic Load/unload (L/UL) mechanism is an alternative to the contact start stop (CSS) technology which eliminates stiction and wear failure modes associated with CSS. Other benefits of L/UL include increased areal density due to smooth disk surfaces, thinner overcoats, and lower head flying height Improved shock resistance due to elimination of head slap, and reduced power consumption. Inertia latch mechanism becomes important for mobile disk drives because of non operating shock performance. Various types of latch designs have been introduced in hard disk drives to limit a rotary actuator from sudden uncontrolled motion. In this paper, a single spring inertia latch is introduced for a small form optical disk drive, which uses a rotary actuator for moving an optical pick-up. A new small inertia latch with single spring is designed to ensure both feasible and small size. The shock performance of the new inertia latch is experimentally verified.

  • PDF

An Investigation into the Mode Superposition Method for the Foreced Transverse Vibration Analysis of Structures subject to the Timoshenko Beam Analogy (기준진동형중첩법(基準振動型重疊法)에 의한 Timoshenko보 유추(類推) 구조체(構造體)의 강제횡진동해석(强制橫振動解析))

  • K.C.,Kim;Y.I.,Park;H.M.,Kim;Y.J.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.1
    • /
    • pp.21-27
    • /
    • 1983
  • The mode superposition method(MSM) for the forced transverse vibration analysis of structures subject to Timoshenko beam analogy, which had originally been developed by Ormondroyd and McGoldrick, is reviewed to formulate it in more general form taking account of rotary inertia, dampings in separate terms of internal and external ones, and simultaneous action of exciting forces and moments. To investigate some general features of the method in practical utilizations, resonant maximum amplitudes of 4 high speed ships under concentrated sinusoidal excitation at the stern are calculated by both MSM and the finite difference method(FDM). For the FDM the hulls are discretized into 40 equal segments, and in utilization of MSM contributions of the first six modes are summed up to obtain responses up to the six-nodes resonant mode. The numerical results show that MSM gives slightly higher values, $4{\sim}10%$, than those by FDM. Since there is always uncertainty in the damping estimation of actual systems, influences of the damping magnitude on resonant amplitudes and a practical method to estimate modal damping coefficients are discussed.

  • PDF

Vibration and sound of Silla Great Bell (신라대종의 진동과 음향)

  • Kim, Seockhyun;Lee, Joong Hyeok;Byeon, Jun Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.186-193
    • /
    • 2017
  • Silla Great Bell was manufactured in order to ring for the new millennium in succession to King Seongdeok Divine Bell. This study investigates how Silla Great Bell is similar to King Seongdeok Divine Bell in respect of structure and sound. First, design and manufacturing processes are introduced and dimensions of the two bells are compared and the similarity is estimated. Three main characteristics of the sound of a Korean bell are magnificent and harmonic striking sound, dynamic beat, and long lasting hum tone. These three features are compared and objectively estimated using physical parameters. The purpose of the study is to provide useful information to manufacture Korean bell which has beautiful appearance and excellent sound.

A linear model for structures with Tuned Mass Dampers

  • Ricciardelli, Francesco
    • Wind and Structures
    • /
    • v.2 no.3
    • /
    • pp.151-171
    • /
    • 1999
  • In its 90 years of life, the Tuned Mass Damper have found application in many fields of engineering as a vibration reducing device. The evolution of the theory of TMDs is briefly outlined in the paper. A generalised mathematical linear model for the analysis of the response of line-like structures with TMDs is presented. The system matrices of the system including the TMDs are written in the state space as a function of the mean wind speed. The stability of the system can be analysed and the Power Spectral Density Function of any response parameter calculated, taking into account an arbitrary number of modes of vibration as well as an arbitrary number of TMDs, for any given PSDF of the excitation. The procedure can be used to optimise the number, position and mechanical properties of the damping devices, with respect to any response parameter. Due to the stationarity of the excitation, the method is well suited to structures subjected to the wind action. In particular the procedure allows the calculation of the onset galloping wind speed and the response to buffeting, and a linearisation of the aeroelastic behaviour allows its use also for the evaluation of the response to vortex shedding. Finally three examples illustrate the suggested procedure.

Optimal placement and tuning of multiple tuned mass dampers for suppressing multi-mode structural response

  • Warnitchai, Pennung;Hoang, Nam
    • Smart Structures and Systems
    • /
    • v.2 no.1
    • /
    • pp.1-24
    • /
    • 2006
  • The optimal design of multiple tuned mass dampers (multiple TMD's) to suppress multi-mode structural response of beams and floor structures was investigated. A new method using a numerical optimizer, which can effectively handle a large number of design variables, was employed to search for both optimal placement and tuning of TMD's for these structures under wide-band loading. The first design problem considered was vibration control of a simple beam using 10 TMD's. The results confirmed that for structures with widelyspaced natural frequencies, multiple TMD's can be adequately designed by treating each structural vibration mode as an equivalent SDOF system. Next, the control of a beam structure with two closely-spaced natural frequencies was investigated. The results showed that the most effective multiple TMD's have their natural frequencies distributed over a range covering the two controlled structural frequencies and have low damping ratios. Moreover, a single TMD can also be made effective in controlling two modes with closely spaced frequencies by a newly identified control mechanism, but the effectiveness can be greatly impaired when the loading position changes. Finally, a realistic problem of a large floor structure with 5 closely spaced frequencies was presented. The acceleration responses at 5 positions on the floor excited by 3 wide-band forces were simultaneously suppressed using 10 TMD's. The obtained multiple TMD's were shown to be very effective and robust.

Natural vibration of the three-layered solid sphere with middle layer made of FGM: three-dimensional approach

  • Akbarov, Surkay D.;Guliyev, Hatam H.;Yahnioglu, Nazmiye
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.239-263
    • /
    • 2016
  • The paper studies the natural oscillation of the three-layered solid sphere with a middle layer made of Functionally Graded Material (FGM). It is assumed that the materials of the core and outer layer of the sphere are homogeneous and isotropic elastic. The three-dimensional exact equations and relations of linear elastodynamics are employed for the investigations. The discrete-analytical method proposed by the first author in his earlier works is applied for solution of the corresponding eigenvalue problem. It is assumed that the modulus of elasticity, Poisson's ratio and density of the middle-layer material vary continuously through the inward radial direction according to power law distribution. Numerical results on the natural frequencies related to the torsional and spheroidal oscillation modes are presented and discussed. In particular, it is established that the increase of the modulus of elasticity (mass density) in the inward radial direction causes an increase (a decrease) in the values of the natural frequencies.