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ABSTRACT
A method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures 
with irregular cross sections and arbitrary boundary conditions was developed.  The result is compared with that of 
the beam theory. Finite difference method is used for this purpose. The influence of the D 22

 stiffness on the natural 
frequency is rigorously investigated. In this paper, the relation between the applied loading sizes and the natural frequency 
of vibration of some structural elements  is presented. The results of application of this method to steel bridge and 
reinforced concrete slab bridge by using specially orthotropic plate theory is presented.

요    지

임의의 단면과 지점을 갖고 임의의 하중을 받는 보나 탑의 진동해석 방법이 발표된 바가 있다. 이러한 진동해석을 위하
여 처짐의 영향을 고려한 다양한 방법이 검토되었다. 본 연구에서 얻은 결과를 보 이론과 비교하였다. 이러한 목적으로 

본 논문에서는 유한차분법을 사용하였다. 고유진동수에 대한 D 22
 탄성계수의 영향을 철저히 검토하였다. 본 논문에서는 

구조부재의 고유진동수와 적용 하중의 크기에 대한 관련성을 연구하였으며 그 결과를 제시하였다. 본 논문에서는 특별
직교이방성 판이론 이용하여 강교량과 철근콘크리트 슬래브 교량에 적용하여 을 해석하였으며 그 결과를 제시하였다.
Key Words : specially orthotropic plate theory(특별직교이방성 판이론), influence of loading sizes(하중크기의 영향), 

  natural frequencies(고유진동수), finite difference method(유한차분법)
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1.  INTRODUCTION

The advanced composite materials can be used 
economically and efficiently in broad civil engineering 
applications when standards and processes for analysis, 
design, fabrication, construction and quality control are 
established. The problem of deteriorating infrastructures is 
very serious in our country. 

The advanced composite materials can be effectively used 
for repairing such structures. Because of the advantages of 
these materials, such repair job can fulfill two purposes :

(1) Repair of existing damage caused by corrosion, 
impact, earthquake, and others.

(2) Reinforcing the structure against anticipated future 
situation which will require increasing the load 
beyond the design parameters used for this structure.

Before making any decision on repair work, reliable 
non-destructive evaluation is necessary. One of the 
dependable methods is to evaluate the in-situ stiffness of 
the structure by means of obtaining the natural frequency. 

By comparing the in-situ stiffness with the one obtained at 
the design stage, the degree of damage can be estimated 
rather accurately.

The reinforced concrete slab can be assumed as a [0, 90, 
0]r type specially orthotropic plate as a close approximation, 
assuming that the influence of  ,  ,   and   
stiffness are negligible. Many of the bridge and building 
floor systems, including the girders and cross beams, also 
behave as similar specially orthotropic plates. Such plates 
are subject to the concentrated mass/masses in the form of 
traffic loads, or the test equipments such as the accelerator 
in addition to their own masses. Analysis of such problems 
is usually very difficult.

The most of the design engineers for construction has 
academic background of bachelors degree. Theories for 
advanced composite structures are too difficult for such 
engineers and some simple but accurate enough methods are 
necessary.

Most of the civil structures are large in sizes and the 
numbers of laminae are large, even though the thickness to 
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length ratios are small enough to allow to neglect the 
transverse shear deformation effects in stress analysis. For 
such plates, the fiber orientations given above behave as 
specially orthotropic plates and simple formulas developed 
by the reference [Kim 1995, Han & Kim 2001, 2003] can 
be used. 

Most of the bridge and building slabs on girders have 
large aspect ratios. For such cases further simplification is 
possible by neglecting the effect of the longitudinal moment 
terms ( ) on the relevant partial differential equations of 
equilibrium [Han & Kim, 2001]. In this paper, the result of 
the study on the subject problem is presented. Even with 
such assumption, the specially orthotropic plate with 
boundary conditions other than Navier or Levy solution 
types, or with irregular cross section, or with nonuniform 
mass including point masses, analytical solution is very 
difficult to obtain. Numerical method for eigenvalue 
problems are also very much involved in seeking such a 
solution [Han & Kim, 2001, 2003, 2009, Han & Suk, 2010, 
Kim, 1995].

The method of vibration analysis used is the one 
developed by the author. He developed and reported a 
simple but exact method of calculating the natural 
frequency of beam and tower structures with irregular cross 
sections and attached mass/masses. This method has been 
extended to two dimensional problems with several types of 
given conditions and has been reported at several 
international conferences. 

2. METHOD OF ANALYSIS 

The equilibrium equation for the specially orthotropic plate is 
: 









                 (1)

where     

The assumptions needed for this equation are :
(1) The transverse shear deformation is neglected.
(2) Specially orthotropic layers are arranged so that no  
   coupling terms exist, i.e.          .
(3) No temperature or hygrothermal terms exist.

The purpose of this paper is to demonstrate, to the 
practicing engineers, how to apply this equation to the slab 
systems made of plate girders and cross beams.

In case of an orthotropic plate with boundary conditions 
other than Navier or Levy solution type, or with irregular 

cross section, or with nonuniform mass including point masses, 
analytical solution is very difficult to obtain. Numerical 
methods for eigenvalue problems are also very much involved 
in seeking such a solution. Finite difference method (F.D.M) 
is used in this paper. The resulting linear algebraic equations 
can be used for any cases with minor modifications at the 
boundaries, and so on.

The problem of deteriorating infrastructures is very serious 
all over the world. Before making any decision on repair 
work, reliable non-destructive evaluation is necessary. One of 
the dependable methods is to evaluate the in-situ stiffness of the 
structure by means of obtaining the natural frequency. By 
comparing the in-situ stiffness with the one obtained at the 
design stage, the degree of damage can be estimated rather 
accurately.

The basic concept of the Rayleigh method, the most popular 
analytical method for vibration analysis of a single degree of 
freedom system, is the principle of conservation of energy ; 
the energy in a free vibrating system must remain constant if 
no damping forces act to absorb it. In case of a beam, which 
has an infinite number of degree of freedom, it is necessary to 
assume a shape function in order to reduce the beam to a 
single degree of freedom system(Clough 1995). The frequency 
of vibration can be found by equating the maximum strain 
energy developed during the motion to the maximum kinetic 
energy. This method, however, yields the solution either equal 
to or larger than the real one. Recall that Rayleigh's quotient 
≥1 (Kim, 1995). For a complex beam, assuming a correct 
shape function is not possible. In such cases, the solution 
obtained is larger than the real one.

Design engineers need to calculate the natural frequencies 
of such element but obtaining exact solution to such problems 
is very much difficult. Pretlove reported a method of analysis 
of beams with attached masses using the concept of effective 
mass. This method, however, is useful only for certain simple 
types of beams. Such problems can be easily solved by 
presented method.

A simple but exact method of calculating the natural 
frequency corresponding to the first mode of vibration of 
beam and tower structures with irregular cross sections and 
attached mass/masses was developed and reported by Kim in 
1974. This method consists of determining the deflected mode 
shape of the member due to the inertia force under resonance 
condition. Beginning with initially “guessed” mode shape, 
“exact” mode shape is obtained by the process similar to 
iteration. Recently, this method was extended to two 
dimensional problems including composite laminates, and has 
been applied to composite plates with various boundary 
conditions with/without shear deformation effects and reported 
at several international conferences including the Eighth 
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Structures Congress (1990) and Fourth Materials Congress (1996) 
of American Society of Civil Engineers.

This method is used for vibration analysis in this paper.
A natural frequency of a structure is the frequency under 

which the deflected mode shape corresponding to this frequency 
begins to diverge under the resonance condition. From the 
deflection caused by the free vibration, the force required to 
make this deflection can be found, and from this force, 
resulting deflection can be obtained. If the mode shape as 
determined by the series of this process is sufficiently accurate, 
then the relative deflections (maximum) of both the converged 
and the previous one should remain unchanged under the 
inertia force related with this natural frequency. Vibration of a 
structure is a harmonic motion and the amplitude may contain 
a part expressed by a trigonometric function. Considering only 
the first mode as a start, the deflection shape of a structural 
member can be expressed as

   w    sin       (2)

where
W : maximum amplitude
ω : circular frequency of vibration

t  : time

By Newton's second law, the dynamic force of the 
vibrating mass, m, is

                
               (3)

Substituting (2) into this,

             sin       (4)

In this expression, ω and W  are unknowns. In order to 
obtain the natural circular frequency ω, the following process is 
taken.

The magnitudes of the maximum deflection at a certain 
number of points are arbitrarily given as

           w(i,j)(1) = W  (i,j)(1)            (5)

where (i,j) denotes the point under consideration. This is 
absolutely arbitrary but educated guessing is good for accel  
erating convergence. The dynamic force corresponding to this 
(maximum) amplitude is

      F(i,j)(1)=m(i,j){ ω(i,j)(1)}2w(i,j)(1)           (6)

The “new” deflection caused by this force is a function of 

F and can be expressed as

 w(i,j)(2)=f{m(k,l){ ω(i,j)(1)}2 w(k,l)(1)}=




△(i,j,k,l){m(k,l){ ω(i,j)(1)}2 w(k,l)(1)}               (7)

where △ is the deflection influence surface. The relative 
(maximum) deflections at each point under consideration of a 
structural member under resonance condition, w(i,j)(1) and 
w(i,j)(2), have to remain unchanged and the following 
condition has to be held : 

          w(i,j)(1) / w(i,j)(2)=1. (8)

From this equation, w(i,j)(1) at each point of (i,j) can be 
obtained, but they are not equal in most cases. Since the 
natural frequency of a structural member has to be equal at 
all points of the member, i.e., w(i,j) should be equal for all 
(i,j), this step is repeated until sufficient equal magnitude of 
w(i,j) is obtained at all (i,j) points.

However, in most cases, the difference between the 
maximum and the minimum values of w(i,j) obtained by the 
first cycle of calculation is sufficiently negligible for 
engineering purposes. The accuracy can be improved by 
simply taking the average of the maximum and the minimum, 
or by taking the value of w(i,j) where the deflection is the 
maximum. For the second cycle, w(i,j)(2) in

      w(i,j)(3) =f{m(i,j) [ ω(i,j)(2) ] 2w(i,j)(2)} (9)

the absolute numerics of w(i,j)(2) can be used for 
convenience.

In case of a structural member with irregular section 
including composite one, and non-uniformly distributed mass, 
regardless of the boundary conditions, it is convenient to 
consider the member as divided by finite number of elements. 
The accuracy of the result is proportional to the accuracy of 
the deflection calculation.

For practical design purposes, it is desirable to simplify the 
vibration analysis procedure. One of the methods is to neglect 
the weight of the structural elem- ent. The effect of neglecting 
the weight (thus mass) of the plate is studied as follow. If a 
weightless plate is acted upon by a concentrated load, 
P=N⋅q⋅a⋅b, the critical circular frequency of this plate is

                 =




  (10)

where δ
st

 is the static deflection.
Similar result can be obtained by the use of Eqs. (7) and 
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Cross Section

(mm)

HL 500 300

BL 200 150

T1L 15 10

T2L 20 18
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(8).

 〔∆⋅
〕

                     (11)

where, 
         =⋅⋅⋅                        (12)

In case of the plate with more than one concentrated loads,

 〔
 ∆․

〕
                       (13)

If we consider the mass of the plate as well as the 
concentrated loads,

 
w(i,j)(1) = w(i,j)(2)

= { ∑
k.l

△ (i,j,k,l)․m(k,l)․w(k,l)(1)

    + ∑
m.n

△(i,j,m,n)․ P(m,n)
g

․w(m,n)(1)}

    ×[ ω(i,j)(1) ] 2  (14)

where (m,n) is the location of the concentrated loads. The 
effect of neglecting the weight of the plate can be found by 
simply comparing Eqs. (13) and (14).

3. FINITE DIFFERENCE METHOD

 Since no reliable analytical method is available for 
the subject problem, F.D.M. is applied to the governing 
equation of the special orthotropic plates.

The number of the pivotal points required in the case of the 
order of error △2, where △ is the mesh size, is five for the 
central differences of the fourth order single derivative terms. 
This makes the procedure at the boundaries complicated. In 
order to solve such problem, the three simultaneous partial 
differential equations of equilibrium with three dependent 
variables, w, Mx, and My, are used instead of Eq.(1) for the 
bending of the specially orthotropic plate. 

     








             (15)

       



  (16)

       



  (17)

  

 If F.D.M. is applied to these equations, the resulting 
matrix equation is very large in sizes, but the 
tridiagonal matrix calculation scheme used by Kim[ 
Kim, 1965, 1967] is very efficient to solve such 
equations.

 In order to confirm the accuracy of the F.D.M., 
[A/B/A]r type laminate with aspect ratio of 
a/b=1m/1m=1 is considered. The material properties are 
:
E 1= 67.36 GPa, E 2= 8.12 GPa,  
G 12= 3.0217 GPa,

ν
12= 0.272,  ν 21= 0.0328,

 The thickness of a ply is 0.005m. As the r 
increases, B 16

, B 26
, D 16

, and D 26
 decrease and the 

equations for special orthotropic plates can be used. For 
simplicity, it is assumed that ,   and r=1.  
Then =18492 N-m.  

Since one of the few efficient analytical solutions of 
the special orthotropic plate is Navier solution, and this 
is good for the case of the four edges simple supported, 
F.D.M. is used to solve this problem and the result is 
compared with the Navier solution. 

 The mesh size is x=a/10=0.1m, y=b/10=0.1m. The 
deflection at (x, y), under the uniform load of 100N/㎡, 
the origin of the coordinates being at the corner of the 
plate, is obtained, and the ratio of the Navier solution 
to the F.D.M solution is 1.005~1.00028.

4.  NUMERICAL EXAMPLES

4.1 Steel Bridges
The steel bridges under consideration is as given in 

Figure 1 and 2. 

                     Es=200,000MPa
                    υ=0.3
                     S=2m

                    

Fig. 1  Cross Section
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Plate Beam Plate/Beam

δ(m) 0.6765E-01 0.1646E+00 2.43

P=10t

SIMPLE

SIMPLE

FREEFREE

X

2
0

12m

Fig. 2  Girder, Beam and Loading Point

The stiffnesses are given in Table 1.

Table 1  Stiffness

Dij (N․m) Plate Beam

D11 101,199,927.65 101,199,927.65

D22 21,757,837.94 0.00

Analysis is carried out and the result is given in Table 
2.

 Table 2  Deflection at the center (m)

4.2 Reinforced Concrete Slab Bridges
The bridge is as shown in Figure 3 and 4. 

Fig. 3  Concrete Slab Bridge and Loading Points

Fig. 4  Cross Section of the Slab with Unit Width.

 Figure 4 shows the cross section of the slab with unit 
width.
    and     .

Poissons ratio ν
12 =  ν 21 =  0.18  for concrete.

 The stiffness and deflections are given in Tables 3  
and 4.

Table 3  Flexural Stiffnesses (N․m)

Stiffness N․m

D11 323,428,383.7

D22 151,828,300.8

D12 90,690,632.4

D66 206,573,097.2

 

Table 4  Deflections at Wheel Loading Points (m)

Load Point Deflection (m)

1 0.2955E-03

2 0.2458E-03

3 0.2300E-02

4 0.2054E-02

5 0.4155E-03

6 0.3504E-03

5. CONCLUSION

A natural frequency of a structure is the frequency under 
which the deflected mode shape corresponding to this 
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frequency begins to diverge under the resonance condition. 
From the deflection caused by the free vibration, the force 
required to make this deflection can be found and from 
this force, the resulting deflection can be obtained. For 
practical design purposes, it is desirable to simplify the 
vibration analysis procedure. One of the methods is to 
neglect the weight of the beam. 

In this paper, the relation between the applied loading 
sizes and the natural frequency of vibration of some 
structural elements is presented. Many practicing engineers 
get confused on such relations. It is hoped that this paper 
gives some guideline to such practicing engineers. The 
purpose of this paper is to demonstrate, to the practicing 
engineers, how to apply the specially orthotropic plate 
theory to the slab systems made of plate girders and cross 
beams. 

In this paper, results of analysis for design of both plate 
girders and reinforced concrete slabs for bridges are 
presented. It is concluded that the existing design methods 
with beam strip concept gives us too far off results from 
the safe and economic bridges.

REFERENCES

1. Clough, R.W. and Penzien, J. (1995), Dynamics of Structures, 
McGraw-Hill, Inc., N. Y.

2. Han, B.K. and Kim, D.H. (2001)   Analysis of Steel Bridges 
by means of Specially Orthotropic Plate Theory , Journal of K
SSC,  Vol 13 , No. 1, pp.61-69.

3. Han, B.K. and Kim, D.H. (2004),  Simple Method of 
Vibration Analysis of Three Span Continuous Reinforced 
Concrete Bridge with Elastic Intermediate Supports, Journal of  
the Korea Society of Composite Materials, Vol 17.

4. Han, B.K, and Kim, D.H. (2009) Analysis of Design of Steel 
Slab System by means of Special Orthotropic Plate Theory, Pr
oc.. of KISM, Vol 1 No.1, pp 87-90.

5. Han, B. K., Suk, J. W. (2010) The Influence of the Aspect R
atio on the Natural Frequency of the Composite Laminated Pla
tes, Journal of the Korean Society for Advanced Composite Str
uctures, Vol 1, No 2, pp. 14-18.

6. Hongladaromp, T., Rossow, E.C. and Lee, S.L. (1968), 
“Analysis of Elasto-Plastic Grid System”, Journal of the 
Engineering Mechanics Division, ASCE, Vol. 94. No. EM 1, 
pp. 241.16.

7. Kim, D. H.(1965), “Analysis of triangularly folded plate roots 
of umbrella type”, Proc. of 16th Congress of Applied 
Mechanics, Tokyo, Japan.

8. Kim, D.H. (1967), “The Effect of Neglecting the Radial 
Moment Terms in Analyzing a Finite Sectorial Plate by Means 

of Finite Differences”, Proc. Int. Symposium on Space 
Technology and Sciences, Tokyo, Japan.

9. Kim, D.H. (1968), “Design of Welded Composite High 
Strength Plate Girder Bridges by Grid Analysis”. Journal of 
Korea Society of Civil Engineers, Vol. 16(1),    pp. 26-30.

10. Kim, D.H. (1995) Composite Structure for Civil and 
Architectural Engineering, E ＆ FN Spon, 1st edition, 
London.

11. Watanabe, N. (1966), Theory and Calculation of Grid Beams. 
(in Japanese), Tokyo.




