• 제목/요약/키워드: vibration frequency measurement

검색결과 588건 처리시간 0.03초

Measurement and Frequency Weighting Functions for Human Vibration

  • Kee, Dohyung;Park, Hee Sok
    • 대한인간공학회지
    • /
    • 제32권4호
    • /
    • pp.309-319
    • /
    • 2013
  • Objective: The aim of this study is to review and summarize human vibration measurement process, and necessity and methods of frequency weightings for human vibration. Background: Prolonged human exposure to hand-arm vibration and whole-body vibration can result in a range of adverse conditions and the development of occupational diseases such as vibration white finger. For preventing these adverse effects, it is important to correctly apply human vibration measurement process. Method: This manuscript was based on the review and summary of mechanical and human vibration relevant texts, academic papers, materials obtained through web surfing. Results: This manuscript summarizes human vibration measurement process described in ISO standards and relevant texts. The sensitivity of the human body to mechanical vibration is known to be dependent on both the frequency and direction of vibration. To take this into account, varying frequency weighting functions have been developed, and RMS frequency-weighted accelerations are used as the most important quantity to evaluate the effects of vibration on health. ISO provided nine frequency weighting functions in the form of curves and tables. Researches on frequency weightings are focused on development and validation of new frequency weightings to truly reflect the relationship between vibration exposure and its adverse effects. Application: This would be useful information for systematically applying human vibration measurement and analysis process, and for selecting appropriate frequency weighting functions.

옵티컬 플로우를 이용한 영상처리 기반 진동 계측 및 검증 (Vibration Measurements and Verification Based on Image Processing Using Optical Flow)

  • 백준병;이태희;임수연;최봉열;최두현
    • 센서학회지
    • /
    • 제33권5호
    • /
    • pp.384-390
    • /
    • 2024
  • Conventional vibration-measurement methods used for vibration testing typically employ accelerometers, which offer the significant advantage of accurately measuring vibrations at specific positions. However, they can only measure one point at a time as simultaneously measurements of multiple points can be economically disadvantageous. This study aims to overcome these limitations by analyzing the vibration outputs of accelerometers attached to a product and those obtained through image processing. The analysis involved assessing the measurement uncertainties and verifying the low-frequency vibration testing according to KS standards. The results validated and confirmed the reliability of the proposed camera-based image-processing vibration-measurement method, which exhibited a notable vibration-detection performance and measurement errors within 5% compared to accelerometers for low-frequency vibrations. This method has the potential for application across various vibration-response and durability evaluations. Future research should focus on expanding it to high-frequency vibration testing using high-speed cameras and further enhancing image-based vibration-analysis techniques.

영상 처리 방법을 이용한 구조물의 큰 변위 저주파 진동 계측 (Measurement of Large-amplitude and Low-frequency Vibrations of Structures Using the Image Processing Method)

  • 김기영;곽문규
    • 한국소음진동공학회논문집
    • /
    • 제15권3호
    • /
    • pp.329-333
    • /
    • 2005
  • This paper is concerned with the measurement of low-frequency vibrations of structures using the image processing method. To measure the vibrations visually, the measurement system consists of a camera, an image grabber board, and a computer. The specific target installed on the structure is used to calculate the vibration of structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the size of image. In this paper, we propose the methodology for the vibration measurement using the image processing method. The method enables us to measure the displacement directly without any contact. The current resolution of the vibration measurement is limited to sub centimeter scale. However, the frequency bandwidth and resolution can be enhanced by a high-speed and high-resolution image processing system.

레이저와 고속 CCD 카메라를 이용한 대형구조물의 진동계측 (Vibration Measurements of Large-Scale Structure Using Laser and High-Speed CCD Camera)

  • 이창복;안세호;양성훈;염정원;강동욱;김기두
    • 한국통신학회논문지
    • /
    • 제29권8C호
    • /
    • pp.1104-1112
    • /
    • 2004
  • 본 논문에서는 레이저와 고속 CCD 카메라를 이용하여 대형 구조물의 3차원 거동 계측을 위해 진동 주파수 계측 방식을 확립하였다. 구조물에 부착한 대상판에 변동(fluctuation)이 작은 다이오드 레이저를 투사하고, 고속 CCD 카메라로 촬영한 영상에 고정도 상대측정 알고리즘을 적용하여 구조물의 변위를 측정하였다. 초당 120 프레임의 고속 카메라를 이용하고 변위에 FFT를 취해 진동주파수를 구한 경우, 0에서 40Hz까지 $\pm$0.5% 이내의 진동주파수의 정확도를 얻을 수 있다. 이를 이용하면 대형 구조물에 대해 보다 저렴하고 간단하게 고유진동수의 측정이 가능하다. 또한 GPS를 이용한 상대측위 기법과의 비교를 통해 레이저를 이용한 변위측정의 정확도를 입증함으로써, 제안한 진동주파수 측정 방법의 신뢰도와 경제성을 검증하였다.

저노이즈형 진동계측 앱을 통한 MEMS 센서의 계측성능분석 (The Analysis in Measurement Performance MEMS Sensor Through the Low-Noise Vibration Measurement APP)

  • 정영석;윤성원
    • 한국공간구조학회논문집
    • /
    • 제17권1호
    • /
    • pp.93-100
    • /
    • 2017
  • With increasing number construction of high-rise building which has about 40 to 60 floors there have been many kinds of problem which related with usage from vibration. To predict response acceleration, it is important to assess correct natural frequency. However, due to the noise of MEMS sensor, it is difficult to measure dynamic characteristic such as natural frequency when measuring ambient vibration using MEMS sensor within cell phone. Therefore, a comparative analysis on vibration measuring applications was performed after measuring ambient vibration of 2 skyscrappers which have height between 133.5~244.3m that are located in Seoul and Observation tower using I-jishin APP with noise reduction function of MEMS sensor in order to verify the effectiveness of low noise type vibration measurement APP.

A Study on the Measurement and Analysis of Whirling Vibration Behavior of Marine Propulsion Shafting System using Gap-sensors

  • Sun, Jin-Suk;Han, Tae-Min;Lee, Kang-Ki;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.130-135
    • /
    • 2015
  • Recently, as a result of the application of large and multi-blade propellers with high efficiency for large vessels, the vertical bending stiffness of propulsion shafting system tends to be declined. For some specific vessels, the shaft arrangement leads to the forward stern tube bearing to be omitted, decreasing vertical bending stiffness. In this respect, decreased vertical bending stiffness causes the problem which is the blade order resonance frequency to be placed within the operational rpm range of propulsion shafting system. To verify whirling vibration, the measurement should be carried out covering from operating rpm up to target rpm, however, the range is un-measurable generally. In order to resolve the measurement issue, this study shows the measuring method and the assessment method of relevant natural frequency of whiling vibration by using measured harmonic order component of whirling vibration.

보링바 고유진동 계측을 위한 광섬유 진동센서 연구 (A Study of the Boring Bar Vibration Measurement using Optical Fiber Sensor)

  • 송두상;홍준희;정황영;강대화;김병인
    • 한국정밀공학회지
    • /
    • 제26권4호
    • /
    • pp.107-113
    • /
    • 2009
  • In this paper, we studied of measurement the vibration of natural frequency using optical fiber sensor. The boring bar for measurement of vibration in use optical fiber sensor has the advantage of direct measure for the frequency than accelerometer. Because it deal with output value on electrical signal of optical fiber in physical disturbance when it measures the frequency of vibration. The optical fiber sensor measured the vibration of boring bar by the gap in sensing jig while optical fiber just kept contact with boring bar. A prototype system was composed of jig part with gap and optical system part. In this paper, we found out the possibility to measurement of vibration by the gap in use optical fiber.

휴대용 계측기를 이용한 보도교 진동계측분석 (Vibration Measurements of the Foot-Bridges Using Mobile-Phone)

  • 도기영;윤성원;김도현
    • 한국공간구조학회논문집
    • /
    • 제14권1호
    • /
    • pp.61-68
    • /
    • 2014
  • The design of foot-bridge is often influenced by natural frequency. Consequently, vibration frequency becomes important. The empirical expressions used to quantify this parameter at the design phase have not been developed enough to give guideline to Korean foot-bridge. This paper is concerned with the vertical natural frequency of steel foot-bridges. It describes the vibration measurement methods employed for testing structures and presents reliable methods of assessing natural frequency from jumping vibration tests. Data from measurements on 16 structures in Seoul are given. Regression formulas of natural frequency for steel-framed foot-bridges are suggested. Finally, obtained formula are compared with empirical expressions of Seoul City's guideline.

영상 처리 방법을 이용한 구조물의 저주파수 진동 계측 (Measurement of Low-Frequency Vibrations of Structures Using the Image Processing Method)

  • 김기영;곽문규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.503-507
    • /
    • 2004
  • This paper is concerned with the measurement of low-frequency vibrations of structures using the image processing method. To measure the vibrations visually, the measurement system consists of a camera, an image grabber board, and a computer. The specific target installed on the structure is used to calculate the vibration of structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the size of image. In this paper, we discuss the methodology for the vibration measurement using the image processing method. The method enables us to measure the displacement directly without any contact. The resolution of the vibration measurement can be refined but limited to the sub centimeter displacement.

  • PDF

수완계 진동 평가에 영향을 미치는 작용력의 측정 (Measurement of Grip and Feed Force in the Evaluation of Hand-arm Vibration)

  • 최석현;장한기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1038-1042
    • /
    • 2003
  • In order to evaluate dynamic impedance of a hand-arm system it is necessary to measure the hand-transmitted vibration and the reaction force at the same time while gripping the vibrating handle. In the study a device was developed to measure both the vibration and the force. The device consists of a measurement handle with four strain gauge and two accelerometers and a PC based control system with a program for the signal processing and evaluation of the hand-transmitted vibration and reaction force. The handle was installed on the vibration shaker so that it can move by the generated signal from the control system. As an application of the system dynamic reaction force and the frequency weighted acceleration at the handle attached to the shaker were measured at various grip force and feed force. This system will be very useful in the area of impedance measurement and the evaluation of performance of anti-vibration gloves.

  • PDF