• Title/Summary/Keyword: vibration, unbalance

Search Result 311, Processing Time 0.027 seconds

The optimum design for rotating shaft centrifugal pump (원심펌프축계의 최적설계)

  • ;;Iwatsubo, T.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.69-76
    • /
    • 1989
  • This paper presents a method of the optimum design for rotating shaft of centrifugal pump. That is, the object is to optimize the system in stability at the operating speed, unbalance response in the vicinity of the rotor critical speed, leakage flow of the seals. The objective function is composed of these three elements and is minimized by changing seal cleareance, diamoters, and lengths. A typical double suction centrifugal pump is analyzed and its objective function is presented. Then the optimum dimensions of seals are obtained, and vibration characteristics at both initial and optimum conditions are investigated.

  • PDF

A Study on the Grinding Characteristics using Automatic Balancer (Automatic Balancer를 이용한 연삭특성 연구)

  • 김해지
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.498-501
    • /
    • 1999
  • Grinding machine rotating at high speed express the unbalance by the spindle and the weight of grinding wheel. Therefore, the parts requiring a precision processing for grinding machine need acutely to establish of automatic balancer. But the more wheel speed increases the more vibration amplitude increases, surface roughness show the satisfactory according to increase of the wheel speed. Surface roughness of the occasion installing the automatic balancer made better than an occasion no installing the automatic balancer.

  • PDF

Effect of Design Factors on the Vibration of the Steering Wheel of a Passenger Car (승용차 조향계 진동에 미치는 제인자)

  • 박철희;홍성철;송상기
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.5
    • /
    • pp.37-45
    • /
    • 1991
  • 일반 소형 승용차의 고속 주행시 발생하는 진동 중 조향휠의 원주방향의 진동인 shimmy 현상을 연구하였다. Shimmy 현상은 쾌적한 차량 설계단계에서 예측할 수 있고 그 원인을 추정할 수 있도록 조 향계의 모델링 및 이론해석을 하였으며 실험결과치와의 비교검토를 통하여 모델링에 대한 타당성을 검 증하였다. 검증된 모델링을 이용하여 조향계를 구성하는 각 부재의 감쇠, 강성, 타이어의 트레일 및 stabilizer bar 의 강성등의 변화가 조향휠 진동에 미치는 영향을 고찰하였다. 특히 shimmy 현상이 타이 어의 편마모등에 의한 unbalance mass에 얼마나 민감한가를 실험 및 이론적인 해석을 통하여 고찰하였다.

  • PDF

Diagnosis of Asymmetry/Anisotropy in Rotor Systems Using Directional Spectrum (방향 스펙트럼을 이용한 회전체의 비대칭성 및 비등방성 진단)

  • 조치영;이종원
    • Journal of KSNVE
    • /
    • v.3 no.3
    • /
    • pp.279-283
    • /
    • 1993
  • A diagnostic method of anisotropy and asymmetry in rotor systems utilizing the two-sided directional spectra of the operating responses has been presented and tested with a laboratory flexible rotor-bearing system. The experimental results show that the directional spectra can be effectively used for the diagnosis of anisotropy and/or asymmetry in rotor systmes by the investigation of -1X and +2X components in the directional spectrum of unbalance and gravity responses.

  • PDF

Dynamic Behavior Analysis of Rotor-Bearing System for Rotary Compressor (로터리 압축기 회전체-베어링계의 동적 거동해석)

  • 김태학
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.244-251
    • /
    • 1999
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric rotation parts and gas forces induced by the pressure difference between compression and suction gases. Rotor-journal bearing system is nonlinear since the stiffness and damping coef-ficients of the lubrication oil film are not constant in the bearings. in this paper the program for predicting the behaviors of rotor-journal bearing system of rotary compressor is developed. Finite element modeling is used to analyze the flexible rotor. The numerical results are compared with experimental results.

  • PDF

Reducing Vibration of a Centrifugal Turbo Blower for FCEV Using Vibrational Power Flow (진동 동력 흐름 기법을 이용한 FCEV용 원심형 터보 블로워의 진동 저감)

  • Kim, Yoon-Seok;Lee, Sang-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.150-158
    • /
    • 2009
  • A centrifugal turbo blower is one of the part to generate electric power of fuel cell electric vehicle(FCEV). In order to generate the electric power of FCEV, the centrifugal turbo blower operates at very high speed above 30,000rpm in order to increase the pressure of the air, which supplied to a stack of FCEV, using rotation of its impeller blades. Vibration which originated from the blower is generated by unbalance of mechanical components, rotation of bearings and rotating asymmetry that rotate at high speed. The vibration is transmitted to receiving structure through vibration isolators and it can causes serious problems in the noise, vibration and harshness(NVH) performance. Thus, the study about reducing this kind of vibration is an important task. Quantifying the effectiveness of vibration isolation can be effectively accomplished by using vibrational power flow because relative contributions of each isolator to the total vibration transmission can be easily represented. In this paper, vibrational power flow is applied to the centrifugal turbo blower mounted on FCEV in order to analyze the most dominant vibration transmitting path. As a result, the main contributor among four isolators is a mount #3 of the blower. Also, a 30 percent lowering of the mount #3 stiffness shows 34 percent decrement of vibrational power flow by the simulation.

Experimental Study on the Static Balancing Method of an Unbalanced Rigid Rotor (불평형 회전체의 정적평형 방법에 대한 실험적 연구)

  • Chang, Ho-Gyeong;Kim, Sung-Kyu;Kim, Ye-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.13-22
    • /
    • 1991
  • The presence of an unbalanced mass is originated the common source of vibration in machines with rotating rotor. In this study, the unbalanced rigid rotor mounted on an overhang shaft is balanced using the static balancing procedure, and the compensation mass is estimated by the phase angle method and four run method. Also, the reduction of vibration level before and after balancing is examined. In the experimental results, it is shown that the vibration due to the unbalanced mass is decreased by eliminating the effect of the unbalance. Above all, the four run method is proved more effective on the ability of vibration reduction, in small unbalanced mass, the phase angle method.

  • PDF

Model Validation and Controller Design for Vibration Suppression of Flexible Rotor Using AMB

  • Soo Jeon;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1583-1593
    • /
    • 2002
  • This paper discusses the model validation and vibration suppression of an AMB flexible rotor via additional LQG controller. The main difficulty in the vibration suppression of the flexible rotor using AMB is to realize a controller that can minimize resonance without injuring the stabilized rigid modes. In order to solve this problem, simple scheme for system modeling and controller design are developed. Firstly, the AMB flexible rotor is stabilized with a PID controller, which leads to a new stable rotor-bearing system. Then, authors propose the model validation procedure using measured open-loop frequency responses to obtain an accurate model of the AMB flexible rotor system. After that, LQG controller with modal weighting is designed to suppress resonances of the stable rotor-bearing system. Due to the poor controllability and observability of flexible modes compared to rigid ones, balancing of two Gramians is prerequisite for the fair LQG controller design. Simulation with step disturbance and experimental results of unbalance response up to 10,000 rpm verified the effectiveness of the proposed scheme.

Structural Modification for Noise Reduction of the Blower Case in a Fuel Cell Passenger Car Based on the CAE Technology (승용연료전지 자동차용 블로워 케이스의 방사소음 저감을 위한 CAE 이용 구조변경에 관한 연구)

  • Song, Min-Keun;Lee, Sang-Kwon;Seo, Sang-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.972-981
    • /
    • 2008
  • The blower which is installed in a FCEV(fuel cell electric vehicle) may cause noise due to misalignment and unbalance of mechanical components that rotate at high speed. One of the key points in efforts to minimize the noise radiation from a blower is the knowledge of the main radiating component and the relation between the surface vibration of a blower and the sound pressure. In this research, the blower model is developed based on FEM(finite element method). FE(finite element) model is reliable by correlation of frequencies and MAC(modal assurance criterion) values between EMA(experimental modal analysis) and FEA(finite element analysis). This model is applied to predict the vibration of a blower by using inverse force identification method and predict the radiating noise by using BEM(boundary element method). Comparing the frequencies of resonance and those mode shapes between EMA and FEA, a structural modification of the FE model is evaluated for reducing the parameters of the blower noise.

Balancing Technic Based on Rotor Dynamics Analysis of Test Rig (Test Rig 동특성 분석에 따른 밸런싱 기술 적용)

  • Hwang, Dukyoung;Jung, Chonwoo;Park, Insun;Shin, Dongmin;Song, Jinseok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.204-212
    • /
    • 2017
  • The rotor dynamics and balancing technic for rotating equipment during engineering and manufacture stage are to be carefully considered in order to minimize the operation troubles regarding vibration during commissioning stage. In this paper, the test rig, which includes the disks as balancing plane, is designed and manufactured, so that the characteristic of rotor dynamics can be analyzed such as critical speed and mode shape. The critical speed predicted through natural frequency analysis is verified by the actual measurement on bearing housing vibration during start-up condition of test rig. The low speed balancing and the operating speed balancing test are performed respectively with consideration of first critical speed, and the residual unbalance amounts are estimated in accordance with the relevant method described in API standard. In addition, the single and dual plane balancing are carried out on main disk and trim disk depended on phase information at each balancing step.