• Title/Summary/Keyword: via holes

Search Result 139, Processing Time 0.033 seconds

Analysis of inverters for coupling resonators of monoblock dielectric band-pass filter (일체형 유전체 대역 통과 필터의 공진기 결합용 인버터 해석)

  • 강종윤;최지원;심성훈;윤석진;김현재;박창엽
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.191-194
    • /
    • 1999
  • Recently, with the rapid development and demand for compactness of portable communications, the requirement for compact and low-cost filter is increasing. One of the methods for reducing size and cost is to use high dielectric constant and low loss dielectric material in filter. The other is new monoblock dielectric band-pass filter (BPF) which has holes in a single dielectric body without additional coupling elements. This structure effectively reduces the size and cost of the filters. For previous conventional coaxial type dielectric BPF, dielectric substrates were used for coupling between adjacent resonators and additional input and output ports were needed. Coupling between adjacent resonators of monoblock BPF can be otained via electrode pairs. Capacitances of electrode pair structure for coupling are intensively investigated by 3-D FEM. The BPF for PCS has been designed to have a 30 MHz pass-bandwidth with center frequency of 1855 MHz and an attenuation pole at below the passband using a commercial 3-D structure simulator.

  • PDF

Subwavelength Focusing of Light From a Metallic Slit Surrounded by Grooves with Chirped Period

  • Yoon Jaewoong;Choi Kiyoung;Song Seok Ho;Lee Gwansu
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.162-168
    • /
    • 2005
  • Extraordinary phenomena related to the transmission of light via metallic films with subwavelength holes and grooves are known to be due to resonant excitation and interference of surface waves. These waves make various surface structures to have optically effective responses. Further, a related study subject involves the control of light transmitted from a single hole or slit by surrounding it with diffractive structures. This paper reports on the effects of controlling light with a periodic groove structure with Fresnel-type chirping. In Fresnel-type chirping, diffracted surface waves are coherently converged into a focus, and it is designed considering the conditions of constructive interference and angular spectrum optimization under the assumption that the surface waves are composite diffracted evanescent waves with a well-defined in-plane wavenumber. The focusing ability of the chirped periodic structures is confirmed experimentally by two-beam attenuated total reflection coupling. Critical factors for achieving subwavelength foci and bounds on size of focal spots are discussed in terms of the simulation, which uses the FDTD algorithm.

Characteristics of Copper Thin Films and Patter Filling by Electrochemical Deposition(ECD) (전기화학증착법에 의한 구리박막과 패턴충전 특성)

  • Kim, Yong-An;Yang, Seong-Hun;Lee, Seok-Hyeong;Lee, Gyeong-U;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.583-588
    • /
    • 1999
  • The characteristics of copper thin films and pattern filling capability were investigated by ECD. Prior to deposition of copper film, seed-Cu/Ta(TaN)/$SIO_2$(BPSG)/Si structure was manufactured. Copper deposition was performed with various current waveforms(DC/PC, 1~10,000Hz) and current densities(10~60 mA/$\textrm{cm}^2$) after pretreatment (Oxident removal, wetting) of seed-layer. Conformal pattern filling was performed using PC method with fast deposition rate of 6,000~8,000$\AA$/min. Heat-treated($450^{\circ}C$, 30min) copper films showed good resistivities of 1.8~2.1$\mu$$\Omega$.cm. According to the XRD analysis, (111)-preferred orientation of copper film was found in ECD-Cu/seed-Cu/Ta/$Sio_2$/Si structure. Also, we have successfully achieved to fill via holes with 0.35$\mu\textrm{m}$ width and 4:1 aspect ratio.

  • PDF

TSV Formation using Pico-second Laser and CDE (피코초 레이저 및 CDE를 이용한 TSV가공기술)

  • Shin, Dong-Sig;Suh, Jeong;Cho, Yong-Kwon;Lee, Nae-Eung
    • Laser Solutions
    • /
    • v.14 no.4
    • /
    • pp.14-20
    • /
    • 2011
  • The advantage of using lasers for through silicon via (TSV) drilling is that they allow higher flexibility during manufacturing because vacuums, lithography, and masks are not required; furthermore, the lasers can be applied to metal and dielectric layers other than silicon. However, conventional nanosecond lasers have disadvantages including that they can cause heat affection around the target area. In contrast, the use of a picosecond laser enables the precise generation of TSVs with a smaller heat affected zone. In this study, a comparison of the thermal and crystallographic defect around laser-drilled holes when using a picosecond laser beam with varing a fluence and repetition rate was conducted. Notably, the higher fluence and repetition rate picosecond laser process increased the experimentally recast layer, surface debris, and dislocation around the hole better than the high fluence and repetition rate. These findings suggest that even the picosecond laser has a heat accumulation effect under high fluence and short pulse interval conditions. To eliminate these defects under the high speed process, the CDE (chemical downstream etching) process was employed and it can prove the possibility to applicate to the TSV industry.

  • PDF

Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.445-449
    • /
    • 2021
  • Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.

Characteristics of Perovskite Solar Cells with ZnO Coated on Mesoporous TiO2 as an Electron Transfer Layer

  • Ahn, Joonsub;Song, Jaegwan;Han, Eunmi
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.94-97
    • /
    • 2022
  • We fabricated 3 types of ETL, mp TiO2, ZnO, and ZnO coated on mp TiO2(ZMT) to compare the photoelectric conversion efficiency (PCE) and fill factor (FF) of Perovskite solar cells. The structure of the cells was FTO/ETL/Perovskite (CH3NH3PbI3)/spiro-MeOTAD/Ag. SEM morphology assessment of the ETLs showed that mp TiO2 was porous, ZnO was flat, and the ZMT porous surface was filled with a thin layer. Via XRD measurements, the crystal structures of mp TiO2 and ZnO ETL were found to be anatase and wurtzite, respectively. The XPS patterns showing energy bonding of mp TiO2, ZnO, and ZMT O 1s confirmed these materials to be metal oxides such as ETL. The electrical characteristics of the Perovskite solar cells were measured using a solar simulator. Perovskite solar cells with ZMT ETL showed showed PCE of 10.29 % than that of conventional mp TiO2 ETL devices. This was considered a result of preventing Perovskite from seeping into the ETL and preventing recombination of electrons and holes.

Taper phenomenon of UV-laser punching process on zero-shrinkage substrate (무수축 기판 상에 UV 레이저 가공에 의한 Taper 현상)

  • Ahn, Ik-Jun;Yeo, Dong-Hun;Shin, Hyo-Soon;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.285-289
    • /
    • 2015
  • With the miniaturization with both high functionality and high integrity of the probe cards, the highly precise laser punching on the zero-shrinkage high strength substrate has attracted more attention recently. Taper occurrence during laser-punching on green sheets appears as a problem in process. The size (diameter) difference between the entrance hole and the exit hole in tapered holes appeared to be inversely proportional to the hole size itself. To suppress taper occurrence, two-stage punching was adopted as the size of second hole was varied from $70{\mu}m$ to $79{\mu}m$ when punching $80{\mu}m$ via holes on the substrate with thickness of $380{\mu}m$. The minimal taper ratio of 11.9 % appeared with second hole size between 70 to $79{\mu}m$ before sintering. Taper ratio reduced to 7 % after zero-shrinkage sintering. The size difference between first hole and second hole appeared minimal when the size of second hole was 95~97 % to that of first hole.

Examination of the Co-evolution of Galaxies and their Central SMBHs at High Redshifts with Gravitational Lensing by QSO Host Galaxies

  • Taak, Yoon Chan;Im, Myungshin;Kang, Juhyeong;Kim, Jae-Woo;Kim, Dohyeong;Kim, Yongjung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.79.2-79.2
    • /
    • 2015
  • The $M_{BH}-{\sigma}$ relation for galaxies is a stand-out illustration of the co-evolution of galaxies and their central supermassive black holes (SMBHs); however, how this co-evolution occurs and whether this relation holds for SMBHs of the early universe is still a matter of debate. In order to study this at higher redshifts, quasi-stellar objects (QSOs) are the best targets, due to their large sample size and effective $M_{BH}$ estimation. Nevertheless, it is difficult to examine properties of their host galaxies, simply due to the sheer brightness of the QSO itself. Here, we discuss a distinctive method in studying these QSO host galaxies, via gravitational lensing (GL). GL offers a unique approach in determining the mass of the lens object, in this case the host galaxy. QSOs from the SDSS quasar catalog were searched in the Hubble Space Telescope archives, and GL features around them were visually inspected. One such candidate is SDSS J1114-00; to increase its robustness as a GL system candidate, it was observed with the Inamori-Magellan Areal Camera & Spectrograph (IMACS) on the Magellan Baade Telescope at Las Campanas Observatory, to check whether the GL features have identical colors, meaning they are likely to originate from the same source. After confirmation of such GL systems, a sufficiently large sample will enable us to examine the $M_{BH}-{\sigma}$ relation at various redshifts, and in turn, investigate the co-evolution of SMBHs and their host galaxies.

  • PDF

Fabrication of Graphene Field-effect Transistors with Uniform Dirac Voltage Close to Zero (균일하고 0 V에 가까운 Dirac 전압을 갖는 그래핀 전계효과 트랜지스터 제작 공정)

  • Park, Honghwi;Choi, Muhan;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.204-208
    • /
    • 2018
  • Monolayer graphene grown via chemical vapor deposition (CVD) is recognized as a promising material for sensor applications owing to its extremely large surface-to-volume ratio and outstanding electrical properties, as well as the fact that it can be easily transferred onto arbitrary substrates on a large-scale. However, the Dirac voltage of CVD-graphene devices fabricated with transferred graphene layers typically exhibit positive shifts arising from transfer and photolithography residues on the graphene surface. Furthermore, the Dirac voltage is dependent on the channel lengths because of the effect of metal-graphene contacts. Thus, large and nonuniform Dirac voltage of the transferred graphene is a critical issue in the fabrication of graphene-based sensor devices. In this work, we propose a fabrication process for graphene field-effect transistors with Dirac voltages close to zero. A vacuum annealing process at $300^{\circ}C$ was performed to eliminate the positive shift and channel-length-dependence of the Dirac voltage. In addition, the annealing process improved the carrier mobility of electrons and holes significantly by removing the residues on the graphene layer and reducing the effect of metal-graphene contacts. Uniform and close to zero Dirac voltage is crucial for the uniformity and low-power/voltage operation for sensor applications. Thus, the current study is expected to contribute significantly to the development of graphene-based practical sensor devices.

PHOTOCATALYTIC SYNTHESIS OF L-PIPECOLINIC ACID FROM $N_{varepsilon}$-CARBAMYL-L-LYSINE BY AQUEOUS SUSPENSION OF PLATINIZED TITANIUM(IV) OXIDE

  • Ohtani, Bunsho;Aoki, Eishiro;Iwai, Kunihiro;Nishimoto, Sei-Ichi
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.31-37
    • /
    • 1994
  • Photoirradiation at > 300 nm onto a suspension of platinized TiO$_2$ (TiO$_2$-Pt) particles in an aqueous solution. of N$_{\varepsilon}$-carbamyI-L-lysine (Lys(CONH)$_2$) induced the selective N-cyclization of Lys(CONH$_2$) into almost optically pure L-pipecolinic acid (PCA) under argon atmosphere at ambient temperature. Among various TiO$_2$-Pt catalysts, a P-25 (Degussa) powder platinized via impregnation from chloroplatinic acid followed by hydrogen reduction at 753 K exhibited the highest photocatalytic activity for Lys(CONH$_2$) consumption and L-PCA production. GC-MS analyses of L-PCA obtained photocatalytically from $^{15}$N$\alpha$-Lys(CONH$_2$) revealed the selective formation $^{15}$N-substituted L-PCA. This implies that the mechanism for L-PCA production contains selective cleavage of C$_{\varepsilon}$-N bond and intramolecular alkylation at $\alpha$-amino group. Effect of pH on the rate of this photocatalytic reaction was investigated in detail and compared with the pH-dependent charge distribution in Lys(CONH$_2$) molecule. It is clarified that protonation-deprotonation of $\alpha$-amino group gives marked influence on the rate and selectivity of the photocatalytic reaction. On the basis of these results, it is concluded that the selective production of optically pure L-PCA, especially in an acidic suspension of TiO$_2$-Pt, was attributed to the enhanced protonation of $\alpha$-amino group to prevent undesirable oxidation by photogenerated positive holes and blocking of $\varepsilon$-amino group to yield racemic Schiff base intermediate.

  • PDF