DOI QR코드

DOI QR Code

Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur (Dept. of Material Sci. and Eng., Research Center for Sustainable Eco-Devices and Materials (ReSEM), Korea National University of Transportation) ;
  • Ur, Soon-Chul (Dept. of Material Sci. and Eng., Research Center for Sustainable Eco-Devices and Materials (ReSEM), Korea National University of Transportation)
  • Received : 2021.07.14
  • Accepted : 2021.08.10
  • Published : 2021.08.27

Abstract

Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.

Keywords

Acknowledgement

This research was supported by the Korea Basic Science Institute grant funded by the Ministry of Education (grant no. 2019R1A6C1010047).

References

  1. A. R. M. Siddique, S. Mahmud and B. V. Heyst, Renew. Sustain. Energ. Rev., 73, 730 (2017). https://doi.org/10.1016/j.rser.2017.01.177
  2. R. Franz and G. Wiedemann, Ann. Phys., 165, 497 (1853). https://doi.org/10.1002/andp.18531650802
  3. H. S. Dow, M. Na, S. J. Kim and J. W. Lee, J. Mater. Chem. C, 7, 3787 (2019). https://doi.org/10.1039/C8TC06491A
  4. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen and Z. Ren, Nano Lett., 8, 4670 (2008). https://doi.org/10.1021/nl8026795
  5. Y. Pei, Z. M. Gibbs, A. Gloskovskii, B. Balke, W. G. Zeier and G. J. Snyder, Adv. Energy Mater., 4, 1400486 (2014). https://doi.org/10.1002/aenm.201400486
  6. Y. Zhao, J. S. Dyck, B. M. Hernandez and C. Burda, J. Am. Chem. Soc., 132, 4982 (2010). https://doi.org/10.1021/ja100020m
  7. S. M. Kauzlarich, S. R. Brown and G. J. Snyder, Dalton Trans., 21, 2099 (2007).
  8. Q. G. Cao, H. Zhang, M. B. Tang, H. H. Chen, X. X. Yang, Y. Grin and J. T. Zhao, J. Appl. Phys., 107, 10 (2010).
  9. A. Bhardwaj, N. S. Chauhan, S. Goel, V. Singh, J. J. Pulikkotil, T. D. Senguttuvan and D. K. Misra, Phys. Chem. Chem. Phys., 18, 6191 (2016). https://doi.org/10.1039/C5CP07482G
  10. J. Zhang, L. Song, K. A. Borup, M. R. V. Jorgensen and B. B. Iversen, Adv. Energy Mater., 8, 1 (2018).
  11. Y. Wang, X. Zhang, Y. Wang, H. Liu and J. Zhang, Phys. Status Solidi A, 216, 1 (2019).
  12. F. Zhang, C. Chen, H. Yao, F. Bai, L. Yin, X. Li, S. Li, W. Xue, Y. Wang, F. Cao, X. Liu, J. Sui and Q. Zhang, Adv. Funct. Mater., 30, 1 (2020).
  13. L. Song, J. Zhang and B. B. Iversen, J. Mater. Chem. A, 5, 4932 (2017). https://doi.org/10.1039/C6TA08316A
  14. A. Bhardwaj, N. S. Chauhan and D. K. Misra, J. Mater. Chem. A, 3, 10777 (2015). https://doi.org/10.1039/C5TA02155C
  15. A. Bhardwaj, A. Rajput, A. K. Shukla, J. J. Pulikkotil, A. K. Srivastava, A. Dhar, G. Gupta, S. Auluck, D. K. Misra and R. C. Budhani, RSC Adv., 3, 8504 (2013). https://doi.org/10.1039/c3ra40457a
  16. H. Tamaki, H. K. Sato and T. Kanno, Adv. Mater., 28, 10182 (2016). https://doi.org/10.1002/adma.201603955
  17. P. Gorai, B. R. Ortiz, E. S. Toberer and V. Stevanovic, J. Mater. Chem. A, 6, 13806 (2018). https://doi.org/10.1039/C8TA03344G
  18. M. M. Rahman, A. K. M. A. Shawon and S.-C. Ur, Electron. Mater. Lett., 17, 102 (2021). https://doi.org/10.1007/s13391-020-00251-y
  19. A. K. M. A. Shawon, M. M. Rahman and S.-C. Ur, Electron. Mater. Lett., 16, 540 (2020). https://doi.org/10.1007/s13391-020-00241-0
  20. J. Zhang, L. Song and B. B. Iversen, Angew. Chem., 132, 4308 (2020). https://doi.org/10.1002/ange.201912909
  21. M. Dittrich and G. Schumacher, Mater. Sci. Eng., A, 604, 27 (2014). https://doi.org/10.1016/j.msea.2014.03.004
  22. Y. Cui, X. Zhang, B. Duan, J. Li, H. Yang, H. Wang, P. Wen, T. Gao, Z. Fang, G. Li, Y. Li and P. Zhai, J. Mater. Sci.: Mater. Electron., 30, 15206 (2019). https://doi.org/10.1007/s10854-019-01893-x
  23. H. Fujishiro, M. Ikebe, M. Yagi, K. Nakasato, Y. Shibazaki and T. Fukase, J. Low Temp. Phys., 105, 981 (1996). https://doi.org/10.1007/BF00768510