• Title/Summary/Keyword: veterinary live viral vaccines

Search Result 7, Processing Time 0.023 seconds

Application of a PCR Method for the Detection of Mycoplasma in Veterinary Live Viral Vaccines (동물용 생 바이러스 백신에서 Mycoplasma 검출을 위한 PCR 기법 적용)

  • Jeon Woo-Jin;Kim Byoung-Han;Jung Byeong-Yeal;An Dong-Jun;Yi Chul-Hyun;Jang Hwan;Chung Gab-Soo
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.269-274
    • /
    • 2005
  • We evaluated the PCR assay and two commercialized PCR kits for the detection of mycoplasma in veterinary via live vaccines. The PCR assay could specifically detect all the tested Mycoplasma spp. and Acholeplasma spp., whereas two commercialized PCR kits did not. Also, the specificity of the PCR assay showed that 4 reference strains and 7 field isolates belonging to avian mycoplasma species could be all detected. The sensitivity of the PCR assay was determined using pure cultured Mycoplasma spp. and Acholeplasma spp. with a range of 1 to 100 colony forming units/ml in 9 CFR Mycoplasma broth. To test the availability of the PCR assay for veterinary live viral vaccines, A. laidlawii was artificially inoculated into the swine transmissible gastroenteritis-rota virus combined vaccine and canine parvovirus vaccine, respectively and the sensitivity of the PCR assay was similar with the result of cultured samples. In this study, the PCR assays could be used as rapid and sensitive methods for the detection of mycoplasma in veterinary live viral vaccines.

Development of inactivated Akabane and bovine ephemeral fever vaccine for cattle

  • Yang, Dong-Kun;Kim, Ha-Hyun;Jo, Hyun-Ye;Choi, Sung-Suk;Cho, In-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.4
    • /
    • pp.227-232
    • /
    • 2015
  • Akabane and bovine ephemeral fever (BEF) viruses cause vector-borne diseases. In this study, inactivated Akabane virus (AKAV)+Bovine ephemeral fever virus (BEFV) vaccines with or without recombinant vibrio flagellin (revibFlaB) protein were expressed in a baculovirus expression system to measure their safety and immunogenicity. Blood was collected from mice, guinea pigs, sows, and cattle that had been inoculated with the vaccine twice. Inactivated AKAV+BEFV vaccine induced high virus neutralizing antibody (VNA) titer against AKAV and BEFV in mice and guinea pigs. VNA titers against AKAV were higher in mice and guinea pigs immunized with the inactivated AKAV+BEFV vaccine than in animals inoculated with vaccine containing revibFlaB protein. Inactivated AKAV+BEFV vaccine elicited slightly higher VNA titers against AKAV and BEFV than the live AKAV and live BEFV vaccines in mice and guinea pigs. In addition, the inactivated AKAV+BEFV vaccine was safe, and induced high VNA titers, ranging from 1 : 64 to 1 : 512, against both AKAV and BEFV in sows and cattle. Moreover, there were no side effects observed in any treated animals. These results indicate that the inactivated AKAV+BEFV vaccine could be used in cattle with high immunogenicity and good safety.

Evaluation of Japanese encephalitis virus vaccine strains currently used in pigs by molecular characterization

  • Lee, Jeong-Ah;Yang, Dong-Kun;Kim, Ha-Hyun;Kim, Sun-Young;Nah, Jin-Ju;Cho, Soo-Dong;Song, Jae-Young
    • Korean Journal of Veterinary Service
    • /
    • v.35 no.3
    • /
    • pp.169-174
    • /
    • 2012
  • Japanese encephalitis virus (JEV) is one of the main causes of viral encephalitis in human and animals. For over 30 years, a live attenuated JEV vaccine strain has been used in the veterinary field, and it is required to conduct quality evaluation studies on the commercial vaccines. For the quality control of live attenuated JEV vaccine, we investigated the nucleotide sequence similarity of prME gene derived from five JEV vaccines commercially available in pigs in Korea. The Vero cells infected with JEV vaccines showed specific cytopathic effect, which was characterized by rounding and detached cells. In the phylogenetic analysis, all of the vaccine strains showed a close relationship with the original vaccine seed strain (Anyang 300) and clustered into the genotype 3. In comparison of the nucleotide and deduced amino acid sequences of prME genes with the original strain, all JEV vaccine strains showed high amino acid similarity ranging from 98.9% to 99.5%, but had several point mutations, probably due to high mutation rates of viral RNA polymerase by several virus passages. Even though the current JEV vaccine strains have been maintained and produced for a long period of time, the genetic characterization of them have been rarely changed. However, since the mid 1990's, molecular epidemiology of JEV has been changed sharply from genotype 3 to genotype 1 in Korea, further studies on new vaccine strains to genotype 1 is required for more effective prevention in the field.

Distinct Humoral and Cellular Immunity Induced by Alternating Prime-boost Vaccination Using Plasmid DNA and Live Viral Vector Vaccines Expressing the E Protein of Dengue Virus Type 2

  • George, Junu A.;Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • v.11 no.5
    • /
    • pp.268-280
    • /
    • 2011
  • Background: Dengue virus, which belongs to the Flavivirus genus of the Flaviviridae family, causes fatal dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) with infection risk of 2.5 billion people worldwide. However, approved vaccines are still not available. Here, we explored the immune responses induced by alternating prime-boost vaccination using DNA vaccine, adenovirus, and vaccinia virus expressing E protein of dengue virus type 2 (DenV2). Methods: Following immunization with DNA vaccine (pDE), adenovirus (rAd-E), and/or vaccinia virus (VV-E) expressing E protein, E protein-specific IgG and its isotypes were determined by conventional ELISA. Intracellular CD154 and cytokine staining was used for enumerating CD4+ T cells specific for E protein. E protein-specific CD8+ T cell responses were evaluated by in vivo CTL killing activity and intracellular IFN-${\gamma}$ staining. Results: Among three constructs, VV-E induced the most potent IgG responses, Th1-type cytokine production by stimulated CD4+ T cells, and the CD8+ T cell response. Furthermore, when the three constructs were used for alternating prime-boost vaccination, the results revealed a different pattern of CD4+ and CD8+ T cell responses. i) Priming with VV-E induced higher E-specific IgG level but it was decreased rapidly. ii) Strong CD8+ T cell responses specific for E protein were induced when VV-E was used for the priming step, and such CD8+ T cell responses were significantly boosted with pDE. iii) Priming with rAd-E induced stronger CD4+ T cell responses which subsequently boosted with pDE to a greater extent than VV-E and rAd-E. Conclusion: These results indicate that priming with live viral vector vaccines could induce different patterns of E protein-specific CD4+ and CD8+ T cell responses which were significantly enhanced by booster vaccination with the DNA vaccine. Therefore, our observation will provide valuable information for the establishment of optimal prime-boost vaccination against DenV.

Protection provided by a commercial modified-live porcine reproductive and respiratory syndrome virus (PRRSV) 1 vaccine (PRRSV1-MLV) against a Japanese PRRSV2 field strain

  • Joel Miranda;Salvador Romero;Lidia de Lucas;Fumitoshi Saito;Mar Fenech;Ivan Diaz
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.54.1-54.13
    • /
    • 2023
  • Background: Porcine reproductive and respiratory syndrome virus (PRRSV) vaccines do not provide full cross-protection, mainly due to the virus genetic variability. Despite this, vaccines based on modified-live PRRSV (PRRSV-MLV) reduce the disease impact. Objectives: To assess the efficacy of two commercial vaccines-one based on PRRSV1 (PRRSV1-MLV) and another on PRRSV2 (PRRSV2-MLV)-against a Japanese PRRSV2 field strain. Methods: Two groups of three-week-old piglets were vaccinated (G1: PRRSV1-MLV; G2: PRRSV2-MLV) and two were kept as non-vaccinated (INF and CTRL). One month later, G1, G2, and INF were challenged with a PRRSV2 field strain. Results: After the challenge, clinical signs were only observed in INF. Moreover, the highest rectal temperatures and values for the area under the curve (AUC) were observed in INF. Regarding viral detection, both AUC and the proportion of positive samples in blood were higher in INF. In G1, viremic animals never reached 100%. At necropsy (21 d after the challenge), differences for titers among groups were only found in tonsils (G1 < G2 and INF). One animal (belonging to G1) was negative in all tissues. Regarding humoral responses, G1 and G2 seroconverted after vaccination, as detected in the corresponding enzyme-linked immunosorbent assay. Specific neutralizing antibodies (NA) against PRRSV1-MLV were already detected at 14 d after vaccination in G1, showing a significant booster after the challenge, while PRRSV2-MLV NA were detected in G2 at the end of the experiment. Conclusions: Despite genetic differences, PRRSV1-MLV has been demonstrated to confer partial protection against a Japanese PRRSV2 strain, at least as good as PRRSV2-MLV.

Prevalence of autoantibodies that bind to kidney tissues in cats and association risk with antibodies to feline viral rhinotracheitis, calicivirus, and panleukopenia

  • Songaksorn, Nisakorn;Petsophonsakul, Wilaiwan;Pringproa, Kidsadagon;Lampang, Kannika Na;Sthitmatee, Nattawooti;Srifawattana, Nuttawan;Piyarungsri, Kakanang;Thongkorn, Kriangkrai
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.38.1-38.17
    • /
    • 2021
  • Background: The feline viral rhinotracheitis, calicivirus, and panleukopenia (FVRCP) vaccine, prepared from viruses grown in the Crandell-Rees feline kidney cell line, can induce antibodies to cross-react with feline kidney tissues. Objectives: This study surveyed the prevalence of autoantibodies to feline kidney tissues and their association with the frequency of FVRCP vaccination. Methods: Serum samples and kidneys were collected from 156 live and 26 cadaveric cats. Antibodies that bind to kidney tissues and antibodies to the FVRCP antigen were determined by enzyme-linked immunosorbent assay (ELISA), and kidney-bound antibody patterns were investigated by examining immunofluorescence. Proteins recognized by antibodies were identified by Western blot analysis. Results: The prevalences of autoantibodies that bind to kidney tissues in cats were 41% and 13% by ELISA and immunofluorescence, respectively. Kidney-bound antibodies were observed at interstitial cells, apical border, and cytoplasm of proximal and distal tubules; the antibodies were bound to proteins with molecular weights of 40, 47, 38, and 20 kDa. There was no direct link between vaccination and anti-kidney antibodies, but positive antibodies to kidney tissues were significantly associated with the anti-FVRCP antibody. The odds ratio or association in finding the autoantibody in cats with the antibody to FVRCP was 2.8 times higher than that in cats without the antibody to FVRCP. Conclusions: These preliminary results demonstrate an association between anti-FVRCP and anti-cat kidney tissues. However, an increase in the risk of inducing kidney-bound antibodies by repeat vaccinations could not be shown directly. It will be interesting to expand the sample size and follow-up on whether these autoantibodies can lead to kidney function impairment.

The follow up study after massive outbreak of Akabane and bovine ephemeral fever viruses in Korea

  • Yang, Dong-Kun;Kim, Sun-Young;Kim, Ha-Hyun;Kang, Mi-Sun;Nah, Jin-Ju;Choi, Sung-Suk;Seok, Kum-Ok;Cho, Jong-Suk;Song, Jae-Young
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.3
    • /
    • pp.151-155
    • /
    • 2013
  • Since a large number of Akabane and bovine ephemeral fever (BEF) infection occurred in the southern part of Korea in 2010, recent information about seroprevalence of Akabane virus (AKAV) and bovine ephemeral fever virus (BEFV) has been required for preventing both diseases. In this study, serological assay against AKAV and BEFV using virus neutralization assay was conducted using 1,743 bovine sera collected from Namwon, Miryang, Yeongju and Uljin which located in Southern part of Korea from March to May in 2012. The overall seropositive rates for AKAV and BEFV were found to be 49.8% and 1.2%, respectively. The regional distribution of seroprevalence for AKAV ranged from 18.1% to 63.7%. Seroprevalences of AKAV were 63.7% in Miryang, 62.3% in Uljin, 50.7% in Namwon, and 18.1% in Yeongju. The seropositive rates for AKAV in southern part of Korea were higher than the annual average at the national level. On the other hand, seropositive rates of BEFV in four regions were from 0.3 to 3.1%. In detail, regional seroprevalences were 3.1% in Miryang, 2.0% in Uljin, and 1.7% in Yeongju, and 0.3% in Namwon. Even only one year after massive outbreaks, overall seropositive rates were very low, similar to the annual average at the nation level. This result indicates that many number of cattle infected with BEFV may be replaced by new born calf or cattle in farm may not be immunized with vaccines. To prevent another epidemic, a national wide warning should be issued and more aggressive control measure must be implied. Recent global warming phenomenon could lead to more vigorous activity of haematophagous vectors and it is possible that arboviral diseases such as AKAV and BEFV are increased. Therefore, continuous sero-monitoring and extensive vaccination combined with control of haematophagous vectors are important to effectively prevent and control diseases caused by AKAV and BEFV.