• Title/Summary/Keyword: vessel contours

Search Result 9, Processing Time 0.019 seconds

Detection of Vessel Contours in Coronary Arteriograms (관상동맥 영상에서의 혈관 경계 검출)

  • 엄경식;정재호
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.439-446
    • /
    • 1995
  • In this paper, we present an algorithm for the detection of blood vessel contours in coronary aiteriograms. The proposed algorithm is based on both matched filtering and adaptive tracking. The proposed algorithm has merits in that it overcomes the bifurcation section problem as well as narrow vessel problem. Moreover, the algorithm has fast performance as well as insensitivity to noise.

  • PDF

Detection Method of Leukocyte Motions in a Microvessel (미소혈관 내 백혈구 운동의 검출법)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.128-134
    • /
    • 2014
  • In this paper, we propose a detection method of the leukocyte motions in a microvessel by using spatiotemporal image analysis. The leukocyte motions that adhere to blood vessel walls can be visualized to move along the blood vessel wall's contours in a sequence of images. In this proposal method, we use the constraint that the leukocytes move along the blood vessel wall's contours and detect the leukocyte motions by using the spatiotemporal image analysis method. The generated spatiotemporal image is processed by a special-purpose orientation-selective filter and then subsequent grouping processes are done. The subsequent grouping processes select and group the leukocyte trace segments among all the segments obtained by simple thresholding and skeletonizing operations. Experimental results show that the proposed method can stably detect the leukocyte motions even when multiple leukocyte traces intersect each other.

Detecting Regions of Stenosis and Aneurysm in a 3D Blood Vessel Model (3차원 혈관 모델에서 협착 및 팽창 영역 탐색 방안)

  • Park, Sang-Jin;Kim, Jae-Sung;Park, Hyungjun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.113-120
    • /
    • 2018
  • Angiography and CT angiography are used widely for the examination of vascular diseases, but the diagnosis of such diseases is made mostly by the subjective judgment of the inspector. This paper proposes a method for detecting the suspicious regions of stenosis and aneurysm in the inner surfaces of 3D blood vessel models reconstructed from medical images. Initially, the 3D curve-skeletons of the blood vessel models and the contours at the nodes of the curve-skeletons were generated. Next, the 3D curve-skeletons were divided into a set of branches and the areas of normal contours of nodes located in each branch were calculated. The nodes whose contours contain suspicious regions were detected by taking into account the average area, maximum and minimum areas, and the area difference between the adjacent normal contours. The diagnosis of stenosis and aneurysm can be supported by properly visualizing the suspicious regions detected. The suspicious regions of the disease were identified by implementing and testing it using several data sets of human blood vessels, highlighting the usefulness of the proposed method.

A Verification of the Accuracy of the Deformable Model in 3 Dimensional Vessel Surface Reconstruction (혈관표면의 3차원 재구성을 위한 Deformable model의 정확성 검증에 관한 연구)

  • Kim, H.C.;Oh, J.S.;Kim, H.R.;Cho, S.B.;Sun, K.;Kim, M.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.3-5
    • /
    • 2005
  • Vessel boundary detection and modeling is a difficult but a necessary task in analyzing the mechanics of inflammation and the structure of the microvasculature. In this paper we present a method of analyzing the structure by means of an active contour model(using GVF Snake) for vessel boundary detection and 3D reconstruction. For this purpose we used a virtual vessel model and produced a phantom model. From these phantom images we obtained the contours of the vessel by GVF Snake and then reconstructed a 3D structure by using the coordinates of snakes.

  • PDF

Automatic Tracking of Retinal Vessels by Analyzing Local Feature Points in IndoCyanine Green Retinal Images (ICG 망막영상에서 국부적 특징점 분석에 의한 혈관의 자동 추적)

  • Lim, Moon-Chul;Kim, Woo-Saeng
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.202-210
    • /
    • 2002
  • During the last few years, the extraction and reconstruction of the blood vessels in the medical image has been actively researched and the analysis for the retinal vessel structure has provided important information for diagnosis and remedy of the retinopathy patients. In this research, we propose the algorithm that tracks automatically the entire retinal vessel in retinal image acquired by the ICG(IndoCyanine Green) technology. This algorithm extracts contours and centers by estimating the local maxima and processing directions and detects bifurcations and junctions by comparing direction components of the local maxima from the gradient magnitude profile of each blood vessel. We present experimental results that the entire blood vessel is automatically reconstructed and is excellent in accuracy and connectivity after applying our algorithm to the ICG retinal images of patients.

Anatomical Study on the Dogmaek-Gyeong and Immaek-Gyeong of the Oriental Medicine (독맥경과 임맥경에 대한 해부학적 고찰)

  • Kim, Soo-Myung
    • Journal of Haehwa Medicine
    • /
    • v.7 no.2
    • /
    • pp.601-607
    • /
    • 1999
  • The human body consists of the twelve main meridians and the eight extra meridians including Dogmaek-Gyeong and Immaek-Gyeong. This study is on twenty-eight acupuncture points Dogmaek-Gyeong and twenty-four acupuncture points Immaek-Gyeong among the eight extra meridians. It is very important to know the accurate acupuncture points, which is the fundamental subject in the Oriental Medicine. From now on they have expressed in Chinese letters and old anatomical terms, acupuncture points are difficult and confused to learn. In order to understand acupuncture points easily, they are translated into Korean anatomical terms focused on osteology in this study. Dogmaek-Gyeong is the meridian of this vessel run along the posterior meridian line of the body. The boundary commences at the coccyx, mounts the length of the vertebral column, contours the skull of the vertex along the philtrum to terminate upon the upper gum. It has twenty-eight acupuncture points. Immaek-Gyeong is the meridian of this vessel run along the anterior meridian line of the body. The boundary commences at the perineum mounts the pubic symphysis along the umbilicus, mandible and the terminates at concave of the lower lip. It has twenty-four acupuncture points.

  • PDF

Measurement of Leukocyte Motions in a Microvessel Using Spatiotemporal Image Analysis

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.315-319
    • /
    • 2008
  • This paper describes a method for recognizing and measuring the motion of each individual leukocyte in microvessel from a sequence of images. A spatiotemporal image is generated whose spatial axes are parallel and vertical to vessel region contours. In order to enhance and extract only leukocyte traces with a turned velocity range even under noisy background, we use a combination of a filtering process using Gabor filters with sharp orientation selectivity and a subsequent 3D spatiotemporal grouping process. The proposed method is shown to be effective by experiments using image sequences of two kinds of microcirculation, rat mesentery microvessels and human retinal capillaries.

PILOT INJECTION OF DME FOR IGNITION OF NATURAL GAS AT DUAL FUEL ENGINE-LIKE CONDITIONS

  • MORSY M. H.;AHN D. H.;CHUNG S. H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The ignition delay of a dual fuel system has been numerically investigated by adopting a constant volume chamber as a model problem simulating diesel engine relevant conditions. A detailed chemical kinetic mechanism, consisting of 28 species and 135 elementary reactions, of dimethyl ether (DME) with methane ($CH_{4}$) sub-mechanism has been used in conjunction with the multi-dimensional reactive flow KIVA-3V code to simulate the autoignition process. The start of ignition was defined as the moment when the maximum temperature in the combustion vessel reached to 1900 K with which a best agreement with existing experiment was achieved. Ignition delays of liquid DME injected into air at various high pressures and temperatures compared well with the existing experimental results in a combustion bomb. When a small quantity of liquid DME was injected into premixtures of $CH_{4}$/air, the ignition delay times of the dual fuel system are longer than that observed with DME only, especially at higher initial temperatures. The variation in the ignition delay between DME only and dual fuel case tend to be constant for lower initial temperatures. It was also found that the predicted values of the ignition delay in dual fuel operation are dependent on the concentration of the gaseous $CH_{4}$ in the chamber charge and less dependent on the injected mass of DME. Temperature and equivalence ratio contours of the combustion process showed that the ignition commonly starts in the boundary at which near stoichiometric mixtures could exists. Parametric studies are also conducted to show the effect of additive such as hydrogen peroxide in the ignition delay. Apart from accurate predictions of ignition delay, the coupling between multi-dimensional flow and multi-step chemistry is essential to reveal detailed features of the ignition process.

Surface Rendering in Abdominal Aortic Aneurysm by Deformable Model (복부대동맥의 3차원 표면모델링을 위한 가변형 능동모델의 적용)

  • Choi, Seok-Yoon;Kim, Chang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.266-274
    • /
    • 2009
  • An abdominal aortic aneurysm occurs most commonly in older individuals (between 65 and 75), and more in men and smokers. The most important complication of an abdominal aortic aneurysm is rupture, which is most often a fatal event. An abdominal aortic aneurysm weakens the walls of the blood vessel, leaving it vulnerable to bursting open, or rupturing, and spilling large amounts of blood into the abdominal cavity. surface modeling is very useful to surgery for quantitative analysis of abdominal aortic aneurysm. the 3D representation and surface modeling an abdominal aortic aneurysm structure taken from Multi Detector Computed Tomography. The construction of the 3D model is generally carried out by staking the contours obtained from 2D segmentation of each CT slice, so the quality of the 3D model strongly defends on the precision of segmentation process. In this work we present deformable model algorithm. deformable model is an energy-minimizing spline guided by external constraint force. External force which we call Gradient Vector Flow, is computed as a diffusion of a gradient vectors of gray level or binary edge map derived from the image. Finally, we have used snakes successfully for abdominal aortic aneurysm segmentation the performance of snake was visually and quantitatively validated by experts.