DOI QR코드

DOI QR Code

Surface Rendering in Abdominal Aortic Aneurysm by Deformable Model

복부대동맥의 3차원 표면모델링을 위한 가변형 능동모델의 적용

  • 최석윤 (고려대학교 대학원 의공학협동) ;
  • 김창수 (부산가톨릭대학교 보건과학대학 방사선학과)
  • Published : 2009.06.28

Abstract

An abdominal aortic aneurysm occurs most commonly in older individuals (between 65 and 75), and more in men and smokers. The most important complication of an abdominal aortic aneurysm is rupture, which is most often a fatal event. An abdominal aortic aneurysm weakens the walls of the blood vessel, leaving it vulnerable to bursting open, or rupturing, and spilling large amounts of blood into the abdominal cavity. surface modeling is very useful to surgery for quantitative analysis of abdominal aortic aneurysm. the 3D representation and surface modeling an abdominal aortic aneurysm structure taken from Multi Detector Computed Tomography. The construction of the 3D model is generally carried out by staking the contours obtained from 2D segmentation of each CT slice, so the quality of the 3D model strongly defends on the precision of segmentation process. In this work we present deformable model algorithm. deformable model is an energy-minimizing spline guided by external constraint force. External force which we call Gradient Vector Flow, is computed as a diffusion of a gradient vectors of gray level or binary edge map derived from the image. Finally, we have used snakes successfully for abdominal aortic aneurysm segmentation the performance of snake was visually and quantitatively validated by experts.

복부대동맥류는 주로 65-75세의 중년이후 남성과 흡연자에서 주로 발생한다. 가장 중요한 증세는 대동맥 파열로서 생명에 치명적이며, 혈관벽이 헐고 약해지고 파열되어 많은 양의 혈액이 복강 내로 쏟아지는 것을 의미한다. 복부대동맥박리를 치료하기 위해서는 3차원 영상 정보가 필요하고, 수술시 임상의사에게 많은 도움이 된다. 3차원 정보는 MDCT로부터 계산되고 3차원 모델은 2차원 CT영상의 분할로 계산된 좌표로부터 재구성된다. 따라서 3차원 영상의 질은 2차원 영상의 분할알고리듬에 의존적이다. 본 연구에서는 목적장기만을 모델링하기 위해서 가변형 능동모델을 제안한다. 가변형 능동모델은 외부힘에 의해서 에너지가 최소화되는 수렴하는 모델이다. 외부힘은 GVF로 불리며, 그레이레벨 또는 영상으로 부터의 이 진경계지도의 구배가 확산되는 것을 계산한다. 실험결과 복부대동맥박리에 적용해서 3차원 표면재구성을 성공했으며, 분할알고리듬의 특성으로 시각적 및 정량적인 평가도 성공했다.

Keywords

References

  1. Freiberg, "Abdominal aortic aneurysms, increasing infrarenal aortic diameter, and risk of total mortality and incident cardiovascular disease events: 10-year follow-up data from the Cardiovascular Health Study," Circulation, Vol.26, No.117(8), pp.1010-1017, 2008.
  2. http://www.hmc.psu.edu/healthinfo/a/abaortic.htm
  3. F. Lederle, G. John, S. Wilson, and F. Littooy, "Yield of repeated screening for abdominal aortic aneurysm after a 4-year interval. Aneurysm Detection and Management Veterans Affairs Cooperative Study Investigators," Arch Intern Med, Vol.160, pp.1117-1121, 2000. https://doi.org/10.1001/archinte.160.8.1117
  4. G. Hai, W. C. Siu, and C. H. Hou, "Improved Techniques for Automatic Image Segmentation," IEEE trans, Circuits and Systems for video Technology, IEEE Trans. Vol.11, pp.1273-1280, 2001. https://doi.org/10.1109/76.974681
  5. T. McInerney, "Deformable models in medical image Analysis: A survey," Medical Image Analysis, Vol.1 No.2, pp.91-108, 1996. https://doi.org/10.1016/S1361-8415(96)80007-7
  6. M. Kass, "Snakes: Active contour models," International Journal of Computer Vision, Vol.1, pp.321-331, 1988. https://doi.org/10.1007/BF00133570
  7. C. Xu, "Gradient vector flow : A new external force for snakes," IEEE Proc. Conference on Computer Vision and Pattern Recognition(CVPR'97), pp.66-71. 1997. https://doi.org/10.1109/CVPR.1997.609299
  8. E. Borenstain, "Shape Guided Object Segmentation," IEEE Proc. Conference on Computer Vision and Pattern Recognition, pp.969-976, 2006. https://doi.org/10.1109/CVPR.2006.276
  9. G. Wood, Digital Image Processing, 3rd edition, Pearson Pub, 2007
  10. M. Li and Z. Lei, "Liver Contour Extraction using Snake and Initial Boundary Auto-generation," International Conference on Bioinformatics and Biomedical Engineering 2008(ICBBE 2008), pp.2669-2672, 2008