• Title/Summary/Keyword: vertical stiffness

Search Result 654, Processing Time 0.025 seconds

Influence of Spot Weld Pitches on Collapse Characteristics of SCPI Vehicle Members (차체구조용 SCPI 강도부재의 점용접간격이 압궤특성에 미치는 영향)

  • 차천석;박제웅;양인영
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.78-78
    • /
    • 2002
  • Front-side members are structures with the greatest energy absorbing capability in a front-end collision of vehicles. This paper was performed to analyze initial collapse characteristics of spot welded hat and double hat-shaped section members, which are basic shape of side members, on the shift of flange weld pitches. The impact collapse tests were carried out by using home-made vertical air compression impact testing machine, and impact velocity of hat-shaped section members is 4.17m/sec and that of double hat-shaped section members is 6.54m/sec. In impact collapse tests, the collapsed length of hat-shaped section members was about 45mm and that of double hat-shaped section members was about 50mm. In consideration of these condition, axial static collapse tests(0.00017m/sec) of hat and double hat-shaped section members were carried out by using UTM which was limited displacement, about 50mm. As the experimental results, to obtain the best initial collapse characteristics, it is important that stiffness of vehicle members increases as section shapes change and the progressively folding mode induces by flange welding pitch.

Influence of Spot Weld Pitches on Collapse Characteristics for SCP1 Vehicle Members (차체구조용 SCP1 강도부재의 점용접간격이 압궤특성에 미치는 영향)

  • 차천석;박제웅;양인영
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.802-808
    • /
    • 2002
  • Front-side members are structures with the greatest energy absorbing capability in a front-end collision of vehicles. This paper was performed to analyze initial collapse characteristics of spot welded hat and double hat-shaped section members, which are basic shape of side members, on the shift of flange weld pitches. The impact collapse tests were carried out by using home-made vertical air compression impact testing machine, and impact velocity of hat-shaped section members is 4.17m/sec and that of double hat-shaped section members is 6.54m/sec. In impact collapse tests, the collapsed length of hat-shaped section members was about 45mm and that of double hat-shaped section members was about 50mm. In consideration of these condition, axial static collapse tests(0.00017m/sec) of hat and double hat-shaped section members were carried out by using UTM which was limited displacement, about 50mm. As the experimental results, to obtain the best initial collapse characteristics, it is important that stiffness of vehicle members increases as section shapes change and the progressively folding mode induces by flange welding pitch.

Implementation of a macro model to predict seismic response of RC structural walls

  • Fischinger, Matej;Isakovic, Tatjana;Kante, Peter
    • Computers and Concrete
    • /
    • v.1 no.2
    • /
    • pp.211-226
    • /
    • 2004
  • A relatively simple multiple-vertical-line-element macro model has been incorporated into a standard computer code DRAIN-2D. It was used in blind predictions of seismic response of cantilever RC walls subjected to a series of consequent earthquakes on a shaking table. The model was able to predict predominantly flexural response with relative success. It was able to predict the stiffness and the strength of the pre-cracked specimen and time-history response of the highly nonlinear wall as well as to simulate the shift of the neutral axis and corresponding varying axial force in the cantilever wall. However, failing to identify the rupture of some brittle reinforcement in the third test, the model was not able to predict post-critical, near collapse behaviour during the subsequent response to two stronger earthquakes. The analysed macro model seems to be appropriate for global analyses of complex building structures with RC structural walls subjected to moderate/strong earthquakes. However, it cannot, by definition, be used in refined research analyses monitoring local behaviour in the post critical region.

Seismic response simulations of bridges considering shear-flexural interaction of columns

  • Zhang, Jian;Xu, Shi-Yu
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.545-566
    • /
    • 2009
  • Bridge columns are subjected to combined actions of axial force, shear force and bending moment during earthquakes, caused by spatially-complex earthquake motions, features of structural configurations and the interaction between input and response characteristics. Combined actions can have significant effects on the force and deformation capacity of RC columns, resulting in unexpected large deformations and extensive damage that in turn influences the performance of bridges as vital components of transportation systems. This paper evaluates the seismic response of three prototype reinforced concrete bridges using comprehensive numerical models that are capable of simulating the complex soil-structural interaction effects and nonlinear behavior of columns. An analytical approach that can capture the shear-flexural interacting behavior is developed to model the realistic nonlinear behavior of RC columns, including the pinching behavior, strength deterioration and stiffness softening due to combined actions of shear force, axial force and bending moment. Seismic response analyses were conducted on the prototype bridges under suites of ground motions. Response quantities of bridges (e.g., drift, acceleration, section force and section moment etc.) are compared and evaluated to identify the effects of vertical motion, structural characteristics and the shear-flexural interaction on seismic demand of bridges.

Ride Quality Analysis Using Seated Human Vibration Modeling (시트-인체 진동 모델링을 이용한 승차감 해석)

  • Kang, Ju Seok
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.194-202
    • /
    • 2015
  • In this paper, dynamic modeling with viscoelastic properties of a human body resting on a seat is presented to quantitatively analyze ride quality of passengers exposed to vertical vibrations. In describing the motions of a seated body, a 5 degree-of-freedom multibody model from the literature is investigated. The viscoelastic characteristics of seats used in railway vehicles are mathematically formulated with nonlinear stiffness characteristics and convolution integrals representing time delay terms. Transfer functions for the floor input are investigated and it is found that these are different in accordance with the input magnitude due to nonlinear characteristics of the seat. Measured floor input at the railway vehicle is used to analyze realistic human vibration characteristics. Frequency weighted RMS acceleration values are calculated and the effects of the seat design parameters on the frequency weighted RMS acceleration values are presented.

Structural Safety Evaluation of An Autoclave Cured Train Carbody with Length of 23m (오토클레이브 성형된 길이 23m 복합재 철도차량 차체의 구조적 특성평가)

  • Kim, Jung-Seok;Lee, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1551-1559
    • /
    • 2005
  • This paper explains manufacturing process and experimental studies on a composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. In order to evaluate structural behavior and safety of the composite carbody, the static load tests such as vertical load, end compressive load, torsional load and 3-point support load tests have been conducted. These tests were performed under Japanese Industrial Standard (JIS) 17105 standard. From the tests, maximum deflection was 12.3mm and equivalent bending stiffness of the carbody was 0.81$\times$10$^{14}$ kgf$\cdot$mm$^{2}$ Maximum stress of the composite body was lower than 12.2$\%$ of strength of the carbon/epoxy. Therefore, the composite body satisfied the Japanese Industrial Standard.

An Experimental Study on Comparison of Structural Behavior of PT Flat Plate and RC Flat Plate Interior Connections (PT 플랫 플레이트와 RC 플랫 플레이트 내부 접합부의 구조적 거동 비교에 관한 실험적 연구)

  • Lee Dong Keun;Ha Sang-Su;Han Sang Whan;Lee Li Ryung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.111-114
    • /
    • 2005
  • While the existing reinforced concrete flat plate(RC flat plate) has a lot of advantages including reduced building height, it has some weak points such as many steel bars and the brittle rupture by punching shear. Compared with the RC flat plate, the post-tensioned flat plate (PT flat plate) has not only the same merits, but it also makes longer span possible and induces slab-column connections to be failed with the ductile behavior rather than with the brittle behavior by means of post-tensioning. However, it is difficult to define the joint behavior of PT flat plate under vertical and lateral loads since there are limit experimental results. For this reason, the experimental study is undertaken to investigate the comparison of behavior of PT flat plate and RC flat plate, and how flat plate(Gravity Load Resisting System) is displaced as lateral loads, like the wind and the earthquake, are occur. The result of this experiment shows that PT flat plate is generally superior to RC flat plate in terms of controlling crack, postponing stiffness deterioration, energy dissipation, etc.

  • PDF

Performance of the Submerged Dual Buoy/Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.11-21
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wav interactions with a system composed of fully submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing between two systems. The fully submerged two systems allow surface and bottom gaps to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of the second kind) that satisfy the Helmholz governing equation in fluid domains. A boundary element program for three fluid domains based on a discrete membrane dynamic model and simple source distribution method is developed. Using this developed computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, gaps, spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters can, if it is properly tuned to the coming waves, have good performances in reflecting the obliquely incident waves over a wide range of wave frequency and headings.

  • PDF

Experimental study of structural behavior of 80MPa concrete outrigger member using post tension method (PT공법을 적용한 80MPa급 콘크리트 아웃리거부재의 실험적 연구)

  • Choi, Jong-Moon;Kim, Woo-Jae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.31-34
    • /
    • 2009
  • Large outrigger elements tie the concrete core to perimeter columns, significantly increasing the building's lateral stiffness as well as its resistance to overturning due to wind. The outriggers are deep elements, and large tie forces are resisted by top and bottom heavy longitudinal reinforcing and vertical ties. To reduce construction costs, all primary reinforcing bars in outrigger levels are SD500. Further, concrete strengths of 80MPa have been specified for outrigger elements. However, the reductions in the amount of concrete and reinforcement steel are more increased in tall building. With these backgrounds, 80MPa high strength concrete outrigger system using post tension method is developed. Significant economic savings can be made by reducing the element sizes and material content. The developed outrigger system is designed using strut-and-tie models. In addition, four 1/4-scale test specimens were selected from the same prototype structure. The results from the tests are confirmed that the structural behaviors of the developed outrigger member have better capacities than those of a conventional method.

  • PDF

Experimental characterization of timber framed masonry walls cyclic behaviour

  • Goncalves, Ana Maria;Ferreira, Joao Gomes;Guerreiro, Luis;Branco, Fernando
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.189-204
    • /
    • 2015
  • After the large destruction of Lisbon due to the 1755 earthquake, the city had to be almost completely rebuilt. In this context, an innovative structural solution was implemented in new buildings, comprising internal timber framed walls which, together with the floors timber elements, constituted a 3-D framing system, known as "cage", providing resistance and deformation capacity for seismic loading. The internal timber framed masonry walls, in elevated floors, are constituted by a timber frame with vertical and horizontal elements, braced with diagonal elements, known as Saint Andrew's crosses, with masonry infill. This paper describes an experimental campaign to assess the in-plane cyclic behaviour of those so called "frontal" walls. A total series of 4 tests were conducted in 4 real size walls. Two models consist of the simple timber frames without masonry infill, and the other two specimens have identical timber frames but present masonry infill. Experimental characterization of the in-plane behaviour was carried out by static cyclic shear testing with controlled displacements. The loading protocol used was the CUREE for ordinary ground motions. The hysteretic behaviour main parameters of such walls subjected to cyclic loading were computed namely the initial stiffness, ductility and energy dissipation capacity.