• Title/Summary/Keyword: vertical plane

Search Result 902, Processing Time 0.029 seconds

THE STUDY OF THE EFFECT OF DENTAL ARCH FORM ON CHEWING MOVEMENT II. THE ANALYSIS OF CHEWING MOVEMENT (저작운동에 미치는 치열궁형태의 영향에 관한 연구 II. 저작운동의 분석에 대하여)

  • Jo Byung-Woan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.4
    • /
    • pp.553-564
    • /
    • 1994
  • Using Sirognathograph Analyzing System, the patterns of chewing movement were analyzed into opening phase and closing phase, each phase to frontal plane, horizontal plane, and sagittal plane by maruyama's classification. In opening phase, the chewing patterns of frontal plane were classifed into Chopping Opening, Grinding Opening, Concave Opening, Lateral Shift Opening, Vertical Guide Opening, Convergence Opening. Those of horizontal plane were classified into Chopping Opening, Grinding Opening, Concave Opening, Protrusive Shift Opening, Posterior Guide Opening, Convergence Opening. Those of sagittal plane were classified into Normal Opening, Protrusive Shift Opening, Vertical Guide Opening, Convergence Opening. In closing phase, the chewing patterns of frontal plane were classified into Normal Closure, Concave Closure, Lateral Shift Closure, Lateral Guide Closure, Vertical Guide Closure, Convergence Closure, Those of horzontal plane were classified into Normal Closure, Concave Closure, Lateral Shift Closure, Protrusive Shift Closure, Lateral Guide closure, Posterior Guide Closure, Convergence Closure. Those of sagittal plane were classified into Normal Closure, Protrusive Shift Closure, Vertical Guide. Closure, Convergence Closure. Results were summarized as follows : 1. Opening phase in chewing movement The Normal Openings in 3 planes(frontal, horizontal, sagittal), the Concave Openings in frontal plane and horizontal plane, the Vertical Guide Opening in frontal plane and the Posterior Guide Opening in horizontal plane were many observed. 2. Closing phase in chewing movement The Concave Closure in frontal and horizontal plane, the Normal Closure in 3 planes (frontal, horizontal, sagittal), the Concave Closure in horizontal plane were many observed.

  • PDF

Useful Image Back-projection Properties in Cameras under Planar and Vertical Motion (평면 및 수직 운동하는 카메라에서 유용한 영상 역투영 속성들)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.7
    • /
    • pp.912-921
    • /
    • 2022
  • Autonomous vehicles equipped with cameras, such as robots, fork lifts, or cars, can be found frequently in industry sites or usual life. Those cameras show planar motion because the vehicles usually move on a plane. Sometimes the cameras in fork lifts moves vertically. The cameras under planar and vertical motion provides useful properties for horizontal or vertical lines that can be found easily and frequently in our daily life. In this paper, some useful back-projection properties are suggested, which can be applied to horizontal or vertical line images captured by a camera under planar and vertical motion. The line images are back-projected onto a virtual plane that is parallel to the planar motion plane and has the same orientation at the camera coordinate system regardless of camera motion. The back-projected lines on the virtual plane provide useful information for the world lines corresponding to the back-projected lines, such as line direction, angle between two horizontal lines, length ratio of two horizontal lines, and vertical line direction. Through experiments with simple plane polygons, we found that the back-projection properties were useful for estimating correctly the direction and the angle for horizontal and vertical lines.

Underwater E-plane Attenuation Model of Omnidirectional Antenna Using Half Power Beam Width (HPBW) (반전력빔폭을 이용한 전방향성 안테나의 수중 환경 수직 평면 감쇠 모델)

  • Kwak, Kyungmin;Park, Daegil;Kim, Younghyeon;Chung, Wan Kyun;Kim, Jinhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1050-1056
    • /
    • 2015
  • In this paper, we use the characteristics of electromagnetic waves underwater attenuation for estimating linear distance between a transmitting node and receiving node, and research underwater vertical plane attenuation model for constructing the underwater localization system. The underwater localization of 2 dimensional with the plane attenuation model in the horizontal plane (H-plane) was proposed previous research. But for the 3 dimensional underwater localization, the additional vertical plane (E-plane) model should be considered. Because the horizontal plane of omnidirectional antenna has the same attenuation tendency in x-y plane according to the distance, whereas in vertical plane shows an irregular pattern in x-z plane. For that reason, in the vertical plane environment, the attenuation should be changed by the position and inclination. Hence, in this paper the distance and angle between transmitting and receiving node are defined using spherical coordinate system and derive an antenna gain pattern using half power beam width (HPBW). The HPBW is called a term which defines antenna's performance between isotropic and other antennas. This paper derives omnidirectional antenna's maximum gain and attenuation pattern model and define vertical plane's gain pattern model using HPBW. Finally, experimental verifications for the proposed underwater vertical plane's attenuation model was executed.

A STUDY ON THE VERTICAL DYSPLASIA IN THE SKELETAL CLASS III MALOCCLUSION (골격형(骨格型) III급(級) 부정교합자(不正咬合者)의 수직부조화(垂直不調和)에 관(關)한 연구(硏究))

  • Shin, Mun-Chang
    • The korean journal of orthodontics
    • /
    • v.20 no.2
    • /
    • pp.333-354
    • /
    • 1990
  • This study was designed to analyse vertical dysplasia such as open bite or deep bite in persons with skeletal Class III malocclusion. The subjects consisted of 60 control patients, 40 Class III open bite patients and 40 Class III deep bite patients. The mean age was 19.8 years in the control group, 17.8 years in the Class III open bite group and 16.5 years in the Class III deep bite group. The results were as follows: 1. In Class III malocclusion patients, the characteristics of the vertical dysplasia are under the palatal plane. 2. In Class III malocclusion patients, the items showing the characteristics of the vertical dysplasia are mandibular plane angle, lower gonial angle, lower facial height, dental height & inclination of the upper first molar, interincisal angle, maxillary & mandibular occlusal plane angle. 3. In Class III malocclusion patients, LPFH/LAFH ratio shows the highest significance among the facial height ratios. 4. In Class III malocclusion patients, open bite group has a upward cant of maxillary occlusal plane & downward cant of mandibular occlusal plane. And deep bite group has a downward cant of maxillary occlusal plane & upward cant of mandibular occlusal plane. 5. In Class III malocclusion patients, the molar teeth of the open bite group are measially inclined and those of the deep bite group are upright.

  • PDF

A Study on Changes in Appendage Design for Improvement of Dynamic Stability of Manta-type Unmanned Undersea Vehicle (Manta형 무인잠수정의 동안정성 향상을 위한 부가물의 설계 변경에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho;Kwon, Hyeong-Ki;Lee, Seung-Keon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.323-331
    • /
    • 2007
  • Proposed Manta-type Unmanned Undersea Vehicle(UUV) turned out to have the tendency of dynamic instability in vertical plane, and moreover to have that of so strong dynamic stability in horizontal plane as to cause another problem in turning motion due to negative value of sway damping lever. The authors discussed the changes in appendage design for improvement of dynamic stability of UUV in vertical and horizontal planes. As a result, the dynamic stability in vertical plane was improved by increasing the area of horizontal stern planes. and the dynamic stability in horizontal plane was also improved by removal of lower vertical plate and by adjusting the area and position of upper vertical plate simultaneously.

A Study on Improving Impedance Characteristics of Planar Monopole Antenna with Vertical Ground Plane (수직 접지면을 갖는 평판형 모노폴 안테나의 임피던스 특성 개선에 관한 연구)

  • Jung, Jin-Woo;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.54-63
    • /
    • 2011
  • This paper presents the improving impedance charactersitics of a planar monopole antenna with a vertical ground plane. For improving impedance characteristics, we used the effect of a vertical ground plane. To analyze the effect of vertical ground plane, we proposed the dipole antenna mode. the impedance characteristics of planar monopole antenna are improved by correlation between monopole antenna and vertical ground plane, based on each operating mode. Our analysis indicates can improve the impedance characteristics of varying planae monopole antennas.

Antenna Factors of Half-wave Resonance Dipole Antennas above the Ground Plane (접지판 위에 놓여진 반파장 공진다이폴 안테나의 안테나 인자)

  • Ki-Chai Kim
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.4
    • /
    • pp.3-9
    • /
    • 1991
  • This paper presents the characteristics of antenna factors of half-wave resonance dipole antennas above a ground plane. The current distributions on a horizontal and vertical dipole antennas were analyzed by the Galerkin's method of moments, and these solutions are used for calculating the horizontal and vertical antenna factors above the ground plane. It is shown that accurate antenna factors of the horizontal and vertical dipole above the ground plane are required of the radiated emission test.

  • PDF

Effects of Vertical Alignment of Leg on the Knee Trajectory and Pedal Force during Pedaling

  • Kim, Daehyeok;Seo, Jeongwoo;Yang, Seungtae;Kang, DongWon;Choi, Jinseung;Kim, Jinhyun;Tack, Gyerae
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.303-308
    • /
    • 2016
  • Objective: This study evaluated the vertical and horizontal forces in the frontal plane acting on a pedal due to the vertical alignment of the lower limbs. Method: Seven male subjects (age: $25.3{\pm} 0.8years$, height: $175.4{\pm}4.7cm$, weight: $74.7{\pm}14.2kg$, foot size: $262.9{\pm}7.6mm$) participated in two 2-minute cycle pedaling tests, with the same load and cadence (60 revolutions per minute) across all subjects. The subject's saddle height was determined by the height when the knee was at $25^{\circ}$ flexion when the pedal crank was at the 6 o'clock position (knee angle method). The horizontal force acting on the pedal, vertical force acting on the pedal in the frontal plane, ratio of the two forces, and knee range of motion in the frontal plane were calculated for four pedaling phases (phase 1: $330{\sim}30^{\circ}$, phase 2: $30{\sim}150^{\circ}$, phase 3: $150{\sim}210^{\circ}$, phase 4: $210{\sim}330^{\circ}$) and the complete pedaling cycle. Results: The range of motion of the knee in the frontal plane was decreased, and the ratio of vertical force to horizontal force and overall pedal force in the complete cycle were increased after vertical alignment. Conclusion: The ratio of vertical force to horizontal force in the frontal plane may be used as an injury prevention index of the lower limb.

A 2-plane micro-computed tomographic alveolar bone measurement approach in mice

  • Catunda, Raisa Queiroz;Ho, Karen Ka-Yan;Patel, Srushti;Febbraio, Maria
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.389-398
    • /
    • 2021
  • Purpose: This study introduces a standardized 2-plane approach using 8 landmarks to assess alveolar bone levels in mice using micro-computed tomography. Materials and Methods: Bone level differences were described as distance from the cemento-enamel junction (CEJ) to alveolar bone crest (ABC) and as percentages of vertical bone height and vertical bone loss, comparing mice infected with Porphyromonas gingivalis (Pg) to controls. Eight measurements were obtained per tooth: 2 in the sagittal plane (mesial and distal) and 6 in the coronal plane (mesiobuccal, middle-buccal, distobuccal, mesiolingual, middle-lingual, and distolingual). Results: Significant differences in the CEJ-to-ABC distance between Pg-infected mice and controls were found in the coronal plane (middle-lingual, mesiobuccal, and distolingual for the first molar; and mesiobuccal, middle-buccal, and distolingual for the second molar). In the sagittal plane, the distal measurement of the second molar was different. The middle-buccal, mesiobuccal, and distolingual sites of the first and second molars showed vertical bone loss relative to controls; the second molar middle-lingual site was also different. In the sagittal plane, the mesial sites of the first and second molars and the distal site of the second molar showed loss. Significantly different vertical bone height percentages were found for the mesial and distal sites of the second molar (sagittal plane) and the middle-lingual and distolingual sites of the first molar(coronal plane). Conclusion: A reliable, standardized technique for linear periodontal assessments in mice is described. Alveolar bone loss occurred mostly on the lingual surface of the coronal plane, which is often omitted in studies.

Middle School and Science-gifted Students' Conceptions about Motion of Objects on the Surface of the Earth and the Moon (지구와 달 표면에서 물체의 운동에 대한 일반 중학생들과 과학영재학생들의 개념)

  • Song, Young-Wook
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.1
    • /
    • pp.193-207
    • /
    • 2013
  • The purpose of this study was to investigate middle school and science-gifted students' conceptions about motion of objects on the surface of the earth and the moon. The subjects were 61 first-, 51 second-, 51 third-year students, for a total of 163 in a middle school and 32 science-gifted students from a university-affiliated sciencegifted education center for secondary school students. The research contents were conceptions about motion of objects by the vertical direction, an inclined plane and horizontal plane on the surface of the earth and the moon. The questions were as follows: If two balls, same size but different mass, were put on, thrown over, by the vertical direction, an inclined plane and a horizontal plane on the surface of the earth and the moon at the same time and speed, which one would arrive faster than the other?; In the same mass in the earth and the moon, how fast could the object reach to which location, the earth or the moon? The results showed that science-gifted students offer meaningful difference on the concept of objects in motion at the vertical direction, an inclined plane and a horizontal plane on the earth and at the vertical direction on the moon than general middle school students. There were meaningful difference on the vertical up direction, an inclined plane and a horizontal plane in the same situation in the earth and the moon. Finally, based on the results of our study, we discuss possible educational implications for teaching the concept of objects in motion.