• Title/Summary/Keyword: vertical loading

Search Result 792, Processing Time 0.024 seconds

The Buckling Analysis of Stiffened Plate with Hole(3rd Report) -compression and shear buckling- (보강(補剛)된 유공판(有孔板)의 좌굴강도해석(挫屈强度解析)(제3보)(第3報) -압축(壓縮) 및 전단좌굴(剪斷挫屈))

  • Chang-Doo,Jang;Seung-Soo,Na
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.9-20
    • /
    • 1985
  • Generally the stiffened plate in the ship structure is subjected to not only axial load but shear load. With respect to those combined loads buckling analysis in necessary. In this paper, buckling strength is analyzed by using Finite Element Method when the stiffened plate with hole is under loading conditions mentioned above. To obtain the higher buckling strength, we need some reinforcement. The methods of reinforcement are attaching doubler around hole and stiffeners in the arbitrary directions For the sake of convenience those arbitrary directions were selected paralleled($0^{\circ}C$), vertical($90^{\circ}C$)and oblique($45^{\circ}C$) to the edge. Two kinds of method mentioned above are investigated, it is clarified that which of the two is more effective reinforcement. From the viewpoint of buckling strength, following conclusions were obtained. When external load direction is unknown, doubler reinforcement is more effective than those of parallel and vertical stiffener. And oblique stiffener reinforcement is more effective than that of doubler when external load direction is know.

  • PDF

Effect of staircase on seismic performance of RC frame building

  • Kumbhar, Onkar G.;Kumar, Ratnesh;Adhikary, Shrabony
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.375-390
    • /
    • 2015
  • Staircase is a vertical transportation element commonly used in every multistoried structure. Inclined flights of staircase are usually casted monolithically with RC frame. The structural configuration of stairs generally introduces discontinuities into the typical regular reinforced concrete frame composed of beams and columns. Inclined position of flight transfers both vertical as well as horizontal forces in the frame. Under lateral loading, staircase in a multistory RC frame building develops truss action creating a local stiffening effect. In case of seismic event the stiff area around staircase attracts larger force. Therefore, special attention is required while modeling and analyzing the building with staircase. However, in general design practice, designers usually ignore the staircase while modeling either due to ignorance or to avoid complexity. A numerical study has been conducted to examine the effect of ignoring staircase in modeling and design of RC frame buildings while they are really present in structure, may be at different locations. Linear dynamic analysis is performed on nine separate building models to evaluate influence of staircase on dynamic characteristics of building, followed by nonlinear static analysis on the same models to access their seismic performance. It is observed that effect of ignoring staircase in modeling is severe and leads to unsafe structure. Effect of location and orientation of staircase is also important in determining seismic performance of RC frame buildings.

Initial Sizing of a Tilt Ducted Fan Type eVTOL for Urban Air Mobility (도심항공 모빌리티(UAM)를 위한 틸트 덕티드 팬 형 eVTOL의 초기 사이징)

  • Lee, Sang Gon;Ko, Bo Sung;Ahn, Seong Ho;Hwang, Ho Yon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.3
    • /
    • pp.52-65
    • /
    • 2021
  • A large amount of time and cost is consumed due to congestions caused by an increasing number of cars which results in a lot of emissions. To overcome these problems, a new electric vertical takeoff and landing (eVTOL) aircraft is being considered. Since vertical take off and landing without a separate runway is realized and electricity is used as a power source, it could solve the saturated ground traffic congestions without emissions. In this paper, the initial sizing was performed based on the Nexus 6HX of Belltextron which is a tilt-ducted fan type. In this study, the electric propulsion system that only uses battery was implemented instead of current Nexus 6HX hybrid electric propulsion. Aerodynamic analyses were performed using OpenVSP and XFLR5. Power-to-weight ratio, wing loading, estimated weight were calculated with these analyses.

Evaluation of Rock Fragmentation due to Artificial Joint Effect (인공절리에 의한 암석의 파쇄도 평가)

  • Noh, You-Song;Suk, Chul-Gi;Park, Hoon
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • Since the rock fragmentation by blasting can affect the subsequent processes including loading, hauling and secondary crushing, its control is essential for the assessment of blasting efficiency as well as production cost. In this study, we were analyzed the rock fragmentation by the direction of artificial joint. The underground blasting experiments were performed after forming the vertical and horizontal artificial joints. The blast fragmentation was conducted by the split-desktop which is a 2D image processing program. As a result, it was found that the horizontal artificial joint was evaluated to have lower overall the size of muck pile than the vertical artificial joint and the distribution of the size of muck pile was varied. It is possible that the direction of artificial joint could suppress the occur of oversize muck pile and control to a certain size or less.

Limit analysis of seismic collapse for shallow tunnel in inhomogeneous ground

  • Guo, Zihong;Liu, Xinrong;Zhu, Zhanyuan
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.491-503
    • /
    • 2021
  • Shallow tunnels are vulnerable to earthquakes, and shallow ground is usually inhomogeneous. Based on the limit equilibrium method and variational principle, a solution for the seismic collapse mechanism of shallow tunnel in inhomogeneous ground is presented. And the finite difference method is employed to compare with the analytical solution. It shows that the analytical results are conservative when the horizontal and vertical stresses equal the static earth pressure and zero at vault section, respectively. The safety factor of shallow tunnel changes greatly during an earthquake. Hence, the cyclic loading characteristics should be considered to evaluate tunnel stability. And the curve sliding surface agrees with the numerical simulation and previous studies. To save time and ensure accuracy, the curve sliding surface with 2 undetermined constants is a good choice to analyze shallow tunnel stability. Parameter analysis demonstrates that the horizontal semiaxis, acceleration, ground cohesion and homogeneity affect tunnel stability greatly, and the horizontal semiaxis, vertical semiaxis, tunnel depth and ground homogeneity have obvious influence on tunnel sliding surface. It concludes that the most applicable approaches to enhance tunnel stability are reducing the horizontal semiaxis, strengthening cohesion and setting the tunnel into good ground.

Structural performance of fiber reinforced cementitious plinths in precast girder bridges

  • Gergess, Antoine N;Challita, Julie
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.313-323
    • /
    • 2022
  • Steel laminated elastomeric bearings are commonly used in bridge structures to control displacements and rotations and transfer forces from the superstructure to the substructure. Proper knowledge of design, fabrication and erection procedures is important to ensure stability and adequate structural performance during the lifetime of the bridge. Difference in elevations sometimes leads to large size gaps between the bearing and the girder which makes the grout thickness that is commonly used for leveling deviate beyond standards. This paper investigates the structural response of High Strength Fiber Reinforced Cementitious (HSFRC) thin plinths that are used to close gaps between bearing pads and precast girders. An experimental program was developed for this purpose where HSFRC plinths of different size were cast and tested under vertical loads that simulate bridge loading in service. The structural performance of the plinths was closely monitored during testing, mainly crack propagation, vertical reaction and displacement. Analytically, the HSFRC plinth was analyzed using the beam on elastic foundation theory as the supporting elastomeric bearing pads are highly compressible. Closed form solutions were derived for induced displacement and forces and comparisons were made between analytical and experimental results. Finally, recommendations were made to facilitate the practical use of HSFRC plinths in bridge construction based on its enhanced load carrying capacity in shear and flexure.

Investigation the effect of dynamic loading on the deformation of ancient man-made underground spaces

  • Rezaee, Hooman;Noorian-Bidgoli, Majid
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.277-287
    • /
    • 2022
  • The ancient underground cities are a collection of self-supporting spaces that have been manually excavated in the soil or rock in the past. Because these structures have a very high cultural value due to their age, the study of their stability under the influence of natural hazards, such as earthquakes, is very important. In this research, while introducing the underground city of Ouyi Nushabad located in the center of Iran as one of the largest man-made underground cities of the old world, the analysis of dynamic stability is performed. For this purpose, the dynamic stress-displacement analysis has been performed through numerical modeling using the finite element software PLAXIS. At this stage, by simulating the Khorgo earthquake as one of the large-scale earthquakes that occurred in Iran, with a magnitude of 6.9 on the Richter scale, dynamic analysis by time history method has been performed on three selected sections of underground spaces. This study shows that the maximum amount of horizontal and vertical dynamic displacement is 12.9 cm and 17.7 cm, respectively, which was obtained in section 2. The comparison of the results shows that by increasing the cross-sectional area of the excavation, especially the distance between the roof and the floor, in addition to increasing the amount of horizontal and vertical dynamic displacement, the obtained maximum acceleration is intensified compared to the mapping acceleration applied to the model floor. Therefore, preventive actions should be taken to stabilize the excavations in order to prevent damage caused by a possible earthquake.

Experimental and numerical investigations on reinforcement arrangements in RC deep beams

  • Husem, Metin;Yilmaz, Mehmet;Cosgun, Suleyman I.
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.243-254
    • /
    • 2022
  • Reinforced concrete (RC) deep beams are critical structural elements used in offshore pile caps, rectangular cross-section water tanks, silo structures, transfer beams in high-rise buildings, and bent caps. As a result of the low shear span ratio to effective depth (a/d) in deep beams, arch action occurs, which leads to shear failure. Several studies have been carried out to improve the shear resistance of RC deep beams and avoid brittle fracture behavior in recent years. This study was performed to investigate the behavior of RC deep beams numerically and experimentally with different reinforcement arrangements. Deep beams with four different reinforcement arrangements were produced and tested under monotonic static loading in the study's scope. The horizontal and vertical shear reinforcement members were changed in the test specimens to obtain the effects of different reinforcement arrangements. However, the rebars used for tension and the vertical shear reinforcement ratio were constant. In addition, the behavior of each deep beam was obtained numerically with commercial finite element analysis (FEA) software ABAQUS, and the findings were compared with the experimental results. The results showed that the reinforcements placed diagonally significantly increased the load-carrying and energy absorption capacities of RC deep beams. Moreover, an apparent plastic plateau was seen in the load-displacement curves of these test specimens in question (DE-2 and DE-3). This finding also indicated that diagonally located reinforcements improve displacement ductility. Also, the numerical results showed that the FEM method could be used to accurately predict RC deep beams'behavior with different reinforcement arrangements.

Discrete element modeling of strip footing on geogrid-reinforced soil

  • Sarfarazi, Vahab;Tabaroei, Abdollah;Asgari, Kaveh
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.435-449
    • /
    • 2022
  • In this paper, unreinforced and geogrid-reinforced soil foundations were modeled by discrete element method and this performed under surface strip footing loads. The effects of horizontal position of geogrid, vertical position, thickness, number, confining pressure have been investigated on the footing settlement and propagation of tensile force along the geogrids. Also, interaction between rectangular tunnel and strip footing with and without presence of geogrid layer has been analyzed. Experimental results of the literature were used to validation of relationships between the numerically achieved footing pressure-settlement for foundations of reinforced and unreinforced soil. Models and micro input parameters which used in the numerical modelling of reinforced and unreinforced soil tunnel were similar to parameters which were used in soil foundations. Model dimension was 1000 mm* 600 mm. Normal and shear stiffness of soils were 5*105 and 2.5 *105 N/m, respectively. Normal and shear stiffness of geogrid were 1*109 and 1*109 N/m, respectively. Loading rate was 0.001 mm/sec. Micro input parameters used in numerical simulation gain by try and error. In addition of the quantitative tensile force propagation along the geogrids, the footing settlements were visualized. Due to collaboration of three layers of geogrid reinforcements the bearing capacity of the reinforced soil tunnel was greatly improved. In such practical reinforced soil formations, the qualitative displacement propagations of soil particles in the soil tunnel and the quantitative vertical displacement propagations along the soil layers/geogrids represented the geogrid reinforcing impacts too.

An assessment of the mechanical behavior of zeolite tuff used in permeable reactive barriers

  • Cevikbilen, Gokhan
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.305-318
    • /
    • 2022
  • Permeable reactive barriers used for groundwater treatment require proper estimation of the reactive material behavior regarding the emplacement method. This study evaluates the dry emplacement of zeolite (clinoptilolite) to be used as a reactive material in the barrier by carrying out several geotechnical laboratory tests. Dry zeolite samples, exhibited higher wetting-induced compression strains at the higher vertical stresses, up to 12% at 400 kN/m2. The swelling potential was observed to be limited with a 3.5 swell index and less than 1% free swelling strain. Direct shear tests revealed that inundation reduces the shear strength of a dry zeolite column by a maximum of 10%. Falling head permeability tests indicate decreasing permeability values with increasing the vertical effective stress. Regarding self-loading and inundation, the porosity along the zeolite column was calculated using a proposed 1D numerical model to predict the permeability with depth considering the laboratory tests. The calculated discharge efficiency was significantly decreased with depth and less than 2% relative to the top for barrier depths deeper than 20 m. Finally, the importance of directional dependence in the permeability of the zeolite medium for calibrating 2D finite element flow analysis was highlighted by bench-scale tests performed under 2D flow conditions.