• Title/Summary/Keyword: vertical loading

Search Result 792, Processing Time 0.025 seconds

Clinical evaluation of ridge augmentation using autogenous tooth bone graft material: case series study

  • Lee, Ji-Young;Kim, Young-Kyun;Yi, Yang-Jin;Choi, Joon-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.4
    • /
    • pp.156-160
    • /
    • 2013
  • Objectives: Interest in bone graft material has increased with regard to restoration in cases of bone defect around the implant. Autogenous tooth bone graft material was developed and commercialized in 2008. In this study, we evaluated the results of vertical and horizontal ridge augmentation with autogenous tooth bone graft material. Materials and Methods: This study targeted patients who had vertical or horizontal ridge augmentation using AutoBT from March 2009 to April 2010. We evaluated the age and gender of the subject patients, implant stability, adjunctive surgery, additional bone graft material and barrier membrane, post-operative complication, implant survival rate, and crestal bone loss. Results: We performed vertical and horizontal ridge augmentation using powder- or block-type autogenous tooth bone graft material, and implant placement was performed on nine patients (male: 7, female: 2). The average age of patients was $49.88{\pm}12.98$ years, and the post-operative follow-up period was $35{\pm}5.31$ months. Post-operative complications included wound dehiscence (one case), hematoma (one case), and implant osseointegration failure (one case; survival rate: 96%); however, there were no complications related to bone graft material, such as infection. Average marginal bone loss after one-year loading was $0.12{\pm}0.19$ mm. Therefore, excellent clinical results can be said to have been obtained. Conclusion: Excellent clinical results can be said to have been obtained with vertical and horizontal ridge augmentation using autogenous tooth bone graft material.

Study of an innovative two-stage control system: Chevron knee bracing & shear panel in series connection

  • Vosooq, Amir Koorosh;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.881-898
    • /
    • 2013
  • This paper describes analytical investigation into a new dual function system including a couple of shear links which are connected in series using chevron bracing capable to correlate its performance with magnitude of earthquakes. In this proposed system, called Chevron Knee-Vertical Link Beam braced system (CK-VLB), the inherent hysteretic damping of vertical link beam placed above chevron bracing is exclusively utilized to dissipate the energy of moderate earthquakes through web plastic shear distortion while the rest of the structural elements are in elastic range. Under strong earthquakes, plastic deformation of VLB will be halted via restraining it by Stopper Device (SD) and further imposed displacement subsequently causes yielding of the knee elements located at the bottom of chevron bracing to significantly increase the energy dissipation capacity level. In this paper first by studying the knee yielding mode, a suitable shape and angle for diagonal-knee bracing is proposed. Then finite elements models are developed. Monotonic and cyclic analyses have been conducted to compare dissipation capacities on three individual models of passive systems (CK-VLB, knee braced system and SPS system) by General-purpose finite element program ABAQUS in which a bilinear kinematic hardening model is incorporated to trace the material nonlinearity. Also quasi-static cyclic loading based on the guidelines presented in ATC-24 has been imposed to different models of CK-VLB with changing of vertical link beam section in order to find prime effectiveness on structural frames. Results show that CK-VLB system exhibits stable behavior and is capable of dissipating a significant amount of energy in two separate levels of lateral forces due to different probable earthquakes.

An Analysis of Aerosols Impacts on the Vertical Invigoration of Continental Stratiform Clouds (에어로솔의 대륙 층운형 구름 연직발달(Invigoration)에 미치는 영향 분석)

  • Kim, Yoo-Jun;Han, Sang-Ok;Lee, Chulkyu;Lee, Seoung-Soo;Kim, Byung-Gon
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • This study examines the effect of aerosols on the vertical invigoration of continental stratiform clouds, using a dataset of Atmospheric Radiation Measurement (ARM) Intensive Operational Period (IOP, March 2000) at the Southern Great Plains (SGP) site. To provide further support to our observation-based findings, the weather research and forecasting (WRF) sensitivity simulations with changing cloud condensation nuclei (CCN) concentrations have been carried out for the golden episode over SGP. First, cross correlation between observed aerosol scattering coefficient and cloud liquid water path (LWP) with a 160-minutes lag is the highest of r = 0.83 for the selected episode, which may be attributable to cloud vertical invigoration induced by an increase in aerosol loading. Modeled cloud fractions in a control run are well matched with the observation in the perspective of cloud morphology and lasting period. It is also found through a simple sensitivity with a change in CCN that aerosol invigoration (AIV) effect on stratiform cloud organization is attributable to a change in the cloud microphysics as well as dynamics such as the corresponding modification of cloud number concentrations, drop size, and latent heating rate, etc. This study suggests a possible cloud vertical invigoration even in the continental stratiform clouds due to aerosol enhancement in spite of a limited analysis based on a few observed continental cloud cases.

Study on the stress distribution around two types of implants with an internal connection by finite element analysis (임프란트와 지대주 간 내측 연결을 갖는 2종의 임프란트에서 저작압이 임프란트 주위골 내응력 분포에 미치는 영향에 관한 연구)

  • Yoo, Mi-Kyung;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.473-488
    • /
    • 2006
  • Adequate bone quality and stress distribution to the bone are of decisive importance for implant success. Even though the success rates of dental implants have been high, implant failures do occur. Overloading has been identified as a primary factor behind dental implant failure. The purpose of this study was to theoretically investigate the effect of two types of implants on the stress distribution in poor bone quality. Employing the finite element method, the study modeled a 4.1 mm diameter, 12.0 mm length implant placed in cortical or spongeous bone. A static loading of lOON was applied at the occlusal surface at 0, 30 degrees angle to the vertical axis of the implant. von Mises stresses concentrations in the supporting bone were analyzed with finite element analysis program. The results were as follows; 1. The stresses at the marginal bone were higher under buccal oblique load(30 degrees off of the long axis) than under vertical load. 2. Under buccal oblique load, the stresses were higher at the lingual marginal bone than at the buccal marginal bone, and the differences were almost the same. 3, Under vertical and oblique load, the stress was the highest at the marginal bone and lowest at the bone around apical portions of implant in cortical bone. 4, Under vertical load, Model 1 showed more effective stress distribution than Model 2 irrespective of bone types. On the other hand, Model 2 showed lower stress concentration than Model 1 under buccal oblique load.

Earth Pressure on a Rigid wall due to Loads Condition and Distance (상재하중의 크기와 이격거리에 따른 강성벽체의 토압분포)

  • Oh, Bun-Jin;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.51-60
    • /
    • 2010
  • Earth pressure due to gravity generally increases linearly with the depth, but the distribution of earth pressure due to surface load depends on the loading condition, the ground condition, and the boundary condition. In this study, the earth pressure on a rigid wall due to the vertical surface load was measured in experiments. Rigid wall was built in the model test box, and it was filled with homogeneous sandy ground (width 30 cm, height 88 cm, length 110 cm). Rigid wall was composed of 8 segments, which were tested on the two load cells. In the tests, we observed the distribution of the earth pressure on the rigid wall depending on the vertical surface load and it's location. According to the test results, the lateral earth pressure due to the vertical surface load showed its maximum value at a constant depth and decreased with the depth, to the negligible value at the critical depth. The critical depth and the depth at which lateral earth pressure reaches its maximum were not decided by the magnitude of the vertical surface load. They were dependant on the distance from the rigid wall.

Seismic behavior of reinforced concrete interior beam-column joints with beams of different depths

  • Xing, G.H.;Wu, T.;Niu, D.T.;Liu, X.
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.429-449
    • /
    • 2013
  • Current Design Codes for Reinforced Concrete (RC) interior beam-column joints are based on limited experimental studies on the seismic behavior of eccentric joints. To supplement existing information, an experimental study was conducted that focused on the effect of eccentricity of the deeper beams with respect to the shallow beams. A total of eight one-third scale interior joints with beams of different depths were subjected to reverse cyclic loading. The primary variables in the test specimens were the amount of joint transverse reinforcement and the cross section of the shallow beams. The overall performance of each test assembly was found to be unsatisfactory in terms of joint shear strength, stiffness, energy dissipation and shear deformation. The results indicated that the vertical eccentricity of spandrel beams in this type of joint led to lower capacity in joint shear strength and severe damage of concrete in the joint core. Increasing the joint shear reinforcement was not effective to alter the failure mode from joint shear failure to beam yielding which is favorable for earthquake resistance design, whereas it was effective to reduce the crack width at the small loading stages. Based on the observed behavior, the shear stress of the joint core was suggested to be kept as low as possible for a safe and practical design of this type of joint.

Full-scale tests and analytical model of the Teflon-based lead rubber isolation bearings

  • Wang, Lu;Oua, Jin;Liu, Weiqing;Wang, Shuguang
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.809-822
    • /
    • 2013
  • Base isolation is widely used in seismic resisting buildings due to its low construction cost, high reliability, mature theory and convenient usage. However, it is difficult to design the isolation layer in high-rise buildings using the available bearings because high-rise buildings are characterized with long period, low horizontal stiffness, and complex re-distribution of the internal forces under earthquake loads etc. In this paper, a simple and innovative isolation bearing, named Teflon-based lead rubber isolation bearing, is developed to address the mentioned problems. The Teflon-based lead rubber isolation bearing consists of friction material and lead rubber isolation bearing. Hence, it integrates advantages of friction bearings and lead rubber isolation bearings so that improves the stability of base isolation system. An experimental study was conducted to validate the effectiveness of this new bearing. The effects of vertical loading, displacement amplitude and loading frequency on the force-displacement relationship and energy dissipation capacity of the Teflon-based lead rubber isolation bearing were studied. An analytical model was also proposed to predict the force-displacement relationship of the new bearing. Comparison of analytical and experimental results showed that the analytical model can accurately predict the force-displacement relationship and elastic shear deflection of the Teflon-based lead rubber isolation bearings.

Experiment of Friction-type Reinforcing Members for Upgrading Wind-Resistant Performance of Transmission Towers (송전철탑의 내풍성능 향상을 위한 마찰형 보강기구 실험)

  • Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.884-892
    • /
    • 2006
  • A friction-type reinforcing member(FRM) is proposed for the purpose of upgrading wind resistant performance of a transmission tower and verified through cyclic loading tests. First, suitable install scheme of the FRM is investigated through numerical analysis. Main-post-reinforcing type and X-brace type installation schemes are examined, and numerical analysis shows that the former is more effective due to the vertical cantilever type behavior of the transmission tower. Based on this result, two types of the FRM's, dissipating energy in slotted belted connections, are proposed. The one utilizes the relative displacement between the FRM and the main post, and the other utilizes that between the separated angles consisting of the FRM as a slip deformation of the slotted bolted connection. Proposed FRM's are installed on each main post of the 1/2 scale substructure models of an actual transmission tower body. From cyclic loading tests, the latter type of the proposed FRM's dissipates energy more effectively and its slip load is controlled by applied torque well, and shares considerable amount of the axial force in the main post.

  • PDF

A Study on the Measuring about the Coefficient of Earth Pressure at Rest 1 (정지토압계수 측정에 관한 연구 1)

  • 송무효
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.92-100
    • /
    • 2001
  • It is very important to determine the coefficient of earth pressure at rest accurately in order to estimate the behavior of soil structure. For estimation of K/sub 0/-value depending upon the stress history of dry sand, a new type of K/sub 0/-oedeometer apparatus is devised, and the horizontal earth pressure is accurately measured. For this study, 2 types of one-cyclic K/sub 0/-Loading/unloading models have been studied experimentally using four relative densities of the sand. The results obtained in this test are as follows : K/sub on'/ the coefficient of earth pressure at - rest for virgin loading is a function of the angle of internal friction Φ' of the sand and is determined as K/sub on/=1 - 0.914 sin Φ', K/sub ou'/ the coefficient of earth pressure at rest for virgin unloading is a function of K/sub on/ and over consolidation ratio(OCR), and is determined as K/sub ou/=K/sub on/(OCR)K/sup a/. The exponent α, increases as the relative density increases. K/sub or'/ the coefficient of earth pressure at rest for virgin reloading decreases in hyperbola type as the vertical stress, σ/sub v/’, increases. And, the stress path at virgin reloading leads to the maximum prestress point, independent upon the value of the minimum unloading stress. The gradient of this curve, m/sub r/ increases as OCR increases.

  • PDF

Service load response prediction of reinforced concrete flexural members

  • Ning, Feng;Mickleborough, Neil C.;Chan, Chun-Man
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 2001
  • A reliable and accurate method has been developed to predict the flexural deformation response of structural concrete members subject to service load. The method that has been developed relates the extent of concrete cracking, measured as a function of the magnitude of applied moment in a member, to the reduction in the effective moment of inertia of cracked reinforced concrete members under service load conditions. The ratio of the area of the moment diagram where the moment exceeds the cracking moment, to the total area of the moment diagram for any loading, provides the basis for the calculation of the effective moment of inertia. This ratio also represents mathematically a probability of crack occurrence. Verification of this method for the determination of the effective moment of inertia has been achieved from an experimental test program, and has included beam tests with different loading configurations, and shear wall tests subjected to a range of vertical and lateral load levels. Further verification of this method has been made with reference to the experimental investigation of other recently published work.