Study on the stress distribution around two types of implants with an internal connection by finite element analysis

임프란트와 지대주 간 내측 연결을 갖는 2종의 임프란트에서 저작압이 임프란트 주위골 내응력 분포에 미치는 영향에 관한 연구

  • Yoo, Mi-Kyung (Department of Periodontology, College of Dentistry, Dan-Kook University) ;
  • Lim, Sung-Bin (Department of Periodontology, College of Dentistry, Dan-Kook University) ;
  • Chung, Chin-Hyung (Department of Periodontology, College of Dentistry, Dan-Kook University) ;
  • Hong, Ki-Seok (Department of Periodontology, College of Dentistry, Dan-Kook University)
  • 유미경 (단국대학교 치과대학 치주과학교실) ;
  • 임성빈 (단국대학교 치과대학 치주과학교실) ;
  • 정진형 (단국대학교 치과대학 치주과학교실) ;
  • 홍기석 (단국대학교 치과대학 치주과학교실)
  • Published : 2006.06.30

Abstract

Adequate bone quality and stress distribution to the bone are of decisive importance for implant success. Even though the success rates of dental implants have been high, implant failures do occur. Overloading has been identified as a primary factor behind dental implant failure. The purpose of this study was to theoretically investigate the effect of two types of implants on the stress distribution in poor bone quality. Employing the finite element method, the study modeled a 4.1 mm diameter, 12.0 mm length implant placed in cortical or spongeous bone. A static loading of lOON was applied at the occlusal surface at 0, 30 degrees angle to the vertical axis of the implant. von Mises stresses concentrations in the supporting bone were analyzed with finite element analysis program. The results were as follows; 1. The stresses at the marginal bone were higher under buccal oblique load(30 degrees off of the long axis) than under vertical load. 2. Under buccal oblique load, the stresses were higher at the lingual marginal bone than at the buccal marginal bone, and the differences were almost the same. 3, Under vertical and oblique load, the stress was the highest at the marginal bone and lowest at the bone around apical portions of implant in cortical bone. 4, Under vertical load, Model 1 showed more effective stress distribution than Model 2 irrespective of bone types. On the other hand, Model 2 showed lower stress concentration than Model 1 under buccal oblique load.

Keywords

References

  1. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw: Experience from a ten year period. Scand J Plastic Reconst Surg 1977;11 (suppl)
  2. Adell R, Lekholm U, RockIer B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10(6):387-416 https://doi.org/10.1016/S0300-9785(81)80077-4
  3. Dan ET. William RL. Tissue-integrated prostheses complication. Int J Oral Maxillifac Implants 1992;7:477-484
  4. Jemt T, Laney WR, Harris D, Henry PJ, Krogh PH Jr, Polizzi G, Zarb GA, Herrmann I. Osseointegrated implants for single tooth replacement: A 1-year report from a multicenter prospective study. Int J Oral Maxillofac Implants 1991;6:29-36
  5. Zarb HA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part III: Problems and complications encounted. J Prosthet Dent 1990;62:185-194
  6. Holmes DC, Grigsby WR, Goel VK, Keller JC. Comparison of stress transmission in the IMZ implant system with polyoxymethylene or titanium intramobile element: a finite element stress analysis. Int J Oral Maxillofac Implants 1992;7(4):450-458
  7. Misch CE, Bidez MW. Implant-protected occlusion: a biomechanical rationale. Compendium 1994;15(11):1330, 1332, 1334 passim: quiz 1344. Review
  8. Le Gall MG, Lauret JF, Saadoun AP. Mastication forces and implant-bearing surface. Pract Periodontics Aesthet Dent 1994;6(9):37-46; quiz 48
  9. Weinberg LA. Reduction of implant loading with therapeutic biomechanics. Implant Dent 1998;7(4):277-285 https://doi.org/10.1097/00008505-199807040-00005
  10. Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995;10(1):99-108
  11. Balfour A, O'Brien GR. Comparative study of antirotational single tooth abutments. J Prosthet Dent 1995;73:36-43 https://doi.org/10.1016/S0022-3913(05)80270-7
  12. Boggan RS, Strong JT, Misch CE, Bidez MW. Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants. J Prosthet Dent 1999;82:436-440 https://doi.org/10.1016/S0022-3913(99)70030-2
  13. Matsushita Y, Kithoh M, Mizuta K, Ikeda H, Suetsugu T. Two-dimensional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J Oral Implantol 1990;16:6-11
  14. Misch CE. Implant design consideration for the posterior regions of the mouth. Implant Dent 1999;8(4):376-385 https://doi.org/10.1097/00008505-199904000-00008
  15. Manx MC. Radiographic assessment of peri-implant vertical bone loss. DICRG interim report No 9. J Oral Maxillofac Surg 1997;55(5):62-71 https://doi.org/10.1016/S0278-2391(97)90448-1
  16. Strong JT, Misch CE, Bides MW, Nalluri P. Functional surface area: thread form and diameter optimization for implant body design. Compendium 1998;19:4-9
  17. Norton MR. An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design. Clin Oral Implants Res 1997;8:290-298 https://doi.org/10.1034/j.1600-0501.1997.080407.x
  18. Norton MR. Assessment of cold welding properties of internal conical interface two commercially available implant system. J Prosthet Dent 1999;81:159-166 https://doi.org/10.1016/S0022-3913(99)70243-X
  19. Norton MR. In vitro evaluation of the strength of the conical implant-to-abutment joint in two commercially available implant systems. J Prosthet Dent 2000;83:567-571 https://doi.org/10.1016/S0022-3913(00)70016-3
  20. Sutter F, Webber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Periodont Rest Dent 1993;13:409-431
  21. Sutter F, Schroeder A, Buser DA. The new concept of ITI hollow-cylinder and hollow-screw implants: Part I. Engineering and design. Int J Oral Maxillofac Implants 1988;3:161-172
  22. 최수영, 이선형. 포스트 길이가 치근내 응력분산에 미치는 영향에 관한 삼차원 유한요소법적연구. 서울치대논문, 1996
  23. 임상전, 곽병만, 이주성. 유한요소법 입문. 동명사, 1993
  24. Burnet DS. Finite element analysis. Addison wesley, 1987
  25. Akca K, Cehreli MC, Iplikcioglu H. Evaluation of the mechanical characteristics of the implant abutment complex of a reduced diameter morse taper implant: a nonlinear finite element stress analysis. Clin Oral Implants Res 2003;14:444-455 https://doi.org/10.1034/j.1600-0501.2003.00828.x
  26. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant abutment connection: an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000;15:519-526
  27. Bass SL, Triplett RG. The effects of preoperative resorption and jaw anatomy on implant success. A report of 303 cases. Clin Oral Implants Res 1991;2:193-198 https://doi.org/10.1034/j.1600-0501.1991.020406.x
  28. Hutton JE, Heath MR, Chai JY, Harnett J, Jemt T, Johns RB. Factors related to success and failure rates at 3-year follow-up in a multicenter study of overdentures supported by Branemark implants. Int J Oral Maxillofac Implants 1995;10:33-42
  29. Friberg B. Jemt T. Lekholm U. Early failures in 4,641 consecutively placed Branemark dental implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 1991;6:142-146
  30. Truhlar RS, Morris HF, Ochi S, Winkler S. Second stage failure related to bone quality in patients receiving endosseous dental implants. KICRG interim report No.7. Dental implant clinical research group. Implant Dent 1994;3:252-255 https://doi.org/10.1097/00008505-199412000-00008
  31. Chung KM, Chung CH, Jeong SM. Finite element analysis of implant prosthesis according to platform width of fixture. J Korean Acad Prosthodont 2003;41:674-688
  32. Lum LB, Osier JF. Load transfer from endosteal implants to supporting bone: An analysis using statics. Part one: Horizontal loading. J Oral Implantol 1992;18(4):343-348
  33. Lum LB. A biomechanical rationale for the use of short implants. J Oral Implantol 1991;17(2):126-131
  34. Weinberg LA. Force distribution in splinted anterior teeth. Oral Surg Oral Med Oral Pathol 1957;10:484-494 https://doi.org/10.1016/0030-4220(57)90007-5
  35. Weinberg LA. Force distribution in splinted posterior teeth. Oral Surg Oral Med Oral Pathol 1957;10:1268-1276 https://doi.org/10.1016/S0030-4220(57)80025-5
  36. Weinberg LA. The biomechanics of force distribution in implant-supported prostheses. Int J Oral Maxillofac Implants 1993;8:19-31
  37. Lee JW, Lee CH, Jo KH. Finite element analysis of stress distribution with load transfer characteristics of the implant/bone interface. J Korean academy of Implant Dentistry 2003;22:48-56
  38. Han CK, Chun HJ, Jung SY. Studies of osseointegrated implant-models in stress distribution. J Korean Acad Prothodont 2000;38:526-542
  39. Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J Prosthet Dent 1996;76(6): 633-640 https://doi.org/10.1016/S0022-3913(96)90442-4
  40. Rangert B, Jemt T, Jorneus L. Forced and moments on Branemark implants. Int J Oral Maxillofac Implants 1989;4:241-247
  41. Rangert B, Krogh PHJ, Langer B, van Roekel NB. Bending overload and implant fracture: A retrospective clinical analysis. Int J Oral Maxillofac Implants 1995;17:326-334
  42. 신하식, 전흥재, 한종현, 이수홍, 연세대학교, 2003
  43. Mollersten L, Lockowandt P, Linden LA. Comparison of strength and failure mode of seven implant systems: An in vitro test. J Prosthet Dent 1997;78:582-591 https://doi.org/10.1016/S0022-3913(97)70009-X
  44. Clift SE, Fisher J, Watson CJ. Finite element stress and strain analysis of the bone surrounding a dental implant: effect of surrounding a dental implant: effect of variations in bone modulus. Proc Inst Mech Eng(H) 1992:206-233
  45. Akca K, Iplikcioglu H. Evaluation of the effect of the residual bone angulation on implant-supported fixed prosthesis in mandibular posterior edentulism. Part II : 3-D finite element stress analysis. Implant Dent 2001;10:239-245
  46. Lekholm U, Zarb GA. Branemark PI, Albrektson T. Tissue-integrated prostheses: osseointegration in clinical dentistry. Quintessence publishing 1985
  47. Holmes DC, Loftus JT. Influence of bone quality on stress distribution for endosseous implant. J Oral Implantol 1997;23(3):104-111
  48. Trisi P, Rao W. Bone classification: Clinical- histomorphometric comparison. Clin Oral Implants Res 1999;10(1):1-7 https://doi.org/10.1034/j.1600-0501.1999.100101.x
  49. Carter DR, Schwab GH, Spengler DM. Tensile fracture of cancellous bone. Acta Orthop Scand 1980;51(5):733-741 https://doi.org/10.3109/17453678008990868
  50. 이양진, 양재호. 하악 임프란트 Bicortification의 응력분산효과에 관한 유한요소분석적 연구. 서울치대논문. 1996