• Title/Summary/Keyword: vertical frame

Search Result 450, Processing Time 0.028 seconds

On Study the Safety Assessment of Accident Electric Multiple Units (전동차 구조체의 안전성 평가 연구)

  • 정종덕;김정국;편장식;김원경;홍용기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1105-1108
    • /
    • 2004
  • This paper describes the structural analysis result and load test result of accident EMU(Electric Multiple Units). Structural analysis and load test of EMU were performed for the criteria of safety assessment. Structural analysis using commercial I-DEAS software provided important information on the stress distribution and load transfer mechanisms as well as the amount of damages during rolling stock crash. The purpose of the load test is to evaluate a safety which carbody structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. The results have been used to provide the critical information for the criteria of safety assessment.

  • PDF

Integrability of the Metallic Structures on the Frame Bundle

  • Islam Khan, Mohammad Nazrul
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.791-803
    • /
    • 2021
  • Earlier investigators have made detailed studies of geometric properties such as integrability, partial integrability, and invariants, such as the fundamental 2-form, of some canonical f-structures, such as f3 ± f = 0, on the frame bundle FM. Our aim is to study metallic structures on the frame bundle: polynomial structures of degree 2 satisfying F2 = pF +qI where p, q are positive integers. We introduce a tensor field Fα, α = 1, 2…, n on FM show that it is a metallic structure. Theorems on Nijenhuis tensor and integrability of metallic structure Fα on FM are also proved. Furthermore, the diagonal lifts gD and the fundamental 2-form Ωα of a metallic structure Fα on FM are established. Moreover, the integrability condition for horizontal lift FαH of a metallic structure Fα on FM is determined as an application. Finally, the golden structure that is a particular case of a metallic structure on FM is discussed as an example.

Evaluation and Improvement for Seismic Resistant Capacity of Reinforced Concrete Infilled Masonry Frame (철근콘크리트 프레임면내 조적벽체의 내진성능 평가 및 개선)

  • 신종학;하기주;최민권;전하석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.411-414
    • /
    • 1999
  • Five reinforced concrete rigid frame and masonry infilled wall and cut off type masonry infilled wall were constructed and tesed during vertical and cycle loads simultaneously. Experimental programs were accomplished to evaluate the structural performance of test spcimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are hoop reinforcement ratio and masonry infilled wall with on without. All the specimens were modelling in one-third scale size.

  • PDF

Efficient Analysis for Vertical Vibration of Multistory Buildings (다층 건축구조물의 효율적인 연직진동해석)

  • 이동근;안상경
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.129-136
    • /
    • 1999
  • This research proposes an effective analytical methodology for vertical vibration of three dimensional frame structures including slabs. The consideration of slabs, although allows more precise results, requires large amount of computer time and memory space due to the use of plane stress elements. In consideration of these problems, a method to properly manage nodal points and degrees of freedom is proposed based on matrix condensation technique. Also studied is the use of substructure method to obtain fast and reliable results with simple input data when they are applied to conventional building structures.

  • PDF

The Shell Elements with vertex Degree of Freedoms (Shell요소의 Normal Rotation)

  • Cho, Soon-Bo
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.256-264
    • /
    • 2006
  • This paper describes the formulation of rectangular flat shell element that is modeled with the six degree of freedoms including a rotational degree of freedom. The rectangular finite element matrix with a rotational degree of freedom is developed using a beam stiffness matrix and compared with other methods. The outputs of the quantity of vertical deflection of cantilever beam show us the improving evidence of the Frame-Shell finite element matrix in a calculation of vertical deflections of cantilever beam.

  • PDF

Study on mechanical behaviors of column foot joint in traditional timber structure

  • Wang, Juan;He, Jun-Xiao;Yang, Qing-Shan;Yang, Na
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • Column is usually floating on the stone base directly with or without positioning tenon in traditional Chinese timber structure. Vertical load originated by the heavy upper structure would induce large friction force and compression force between interfaces of column foot and stone base. This study focused on the mechanical behaviors of column foot joint with consideration of the influence of vertical load. Mechanism of column rocking and stress state of column foot has been explored by theoretical analysis. A nonlinear finite element model of column foot joint has been built and verified using the full-scale test. The verified model is then used to investigate the mechanical behaviors of the joint subjected to cyclic loading with different static vertical loads. Column rocking mechanism and stress distributions of column foot were studied in detail, showing good agreement with the theoretical analysis. Mechanical behaviors of column foot joint and the effects of the vertical load on the seismic behavior of column foot were studied. Result showed that compression stress, restoring moment and stiffness increased with the increase of vertical load. An appropriate vertical load originated by the heavy upper structure would produce certain restoring moment and reset the rocking columns, ensuring the stability of the whole frame.

Progressive Collapse Resistance of RC Frames under a Side Column Removal Scenario: The Mechanism Explained

  • Hou, Jian;Song, Li
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.237-247
    • /
    • 2016
  • Progressive collapse resistance of RC buildings can be analyzed by considering column loss scenarios. Using finite element analysis and a static test, the progressive collapse process of a RC frame under monotonic vertical displacement of a side column was investigated, simulating a column removal scenario. A single-story 1/3 scale RC frame that comprises two spans and two bays was tested and computed, and downward displacement of a side column was placed until failure. Our study offers insight into the failure modes and progressive collapse behavior of a RC frame. It has been noted that the damage of structural members (beams and slabs) occurs only in the bay where the removal side column is located. Greater catenary action and tensile membrane action are mobilized in the frame beams and slabs, respectively, at large deformations, but they mainly happen in the direction where the frame beams and slabs are laterally restrained. Based on the experimental and computational results, the mechanism of progressive collapse resistance of RC frames at different stages was discussed further. With large deformations, a simplified calculation method for catenary action and tensile membrane action is proposed.

Ultimate Strength Testing of 3-D Steel Frame Subjected to Non-Proportional Loads (순차하중을 재하한 3차원 강뼈대 구조물의 극한강도 실험)

  • Kim, Seung Eock;Kang, Kyung Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.59-67
    • /
    • 2002
  • The ultimate strength testing of a two-story, single-bay, and sway allowed space steel frame was performed. Considering a majority of large-scale frame tests in the past, only two-dimensional frames were experimentally studied. Therefore, three-dimensional experiment is needed to extend the knowledge of this field. The steel frame subjected to non-proportional vertical and horizontal load was tested. The load-displacement curve of the test frame is provided. The experiment results are useful for verification of the three-dimensional numerical analysis. The results obtained from 3D non-linear analysis using ABAQUS were compared with experimental data.

A study on the seismic performance of reinforced concrete frames with dry stack masonry wall using concrete block

  • Joong-Won Lee;Kwang-Ho Choi
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.205-215
    • /
    • 2023
  • Currently, many studies are underway at home and abroad on the seismic performance evaluation and dry construction method of the masonry structure. In this study, a dry stack masonry wall system without mortar using concrete blocks is proposed, and investigate the seismic performance of dry filling wall frames through experimental studies. First, two types of standard blocks and key blocks were designed to assemble dry walls of concrete blocks. And then, three types of experiments were manufactured, including pure frame, 1/2 height filling wall frame, and full height filling wall frame, and cyclic load experiments in horizontal direction were performed to analyze crack patterns, load displacement history, rebar deformation yield, effective stiffness change, displacement ductility, and energy dissipation capacity. According to the experimental results, the full height filling wall frame had the largest horizontal resistance against the earthquake load and showed a high energy dissipation capacity. However, the 1/2 height filling wall frame requires attention because the filling wall constrains the effective span of the column, limiting the horizontal displacement of the frame. In addition, the concrete block was firmly assembled in the vertical direction of the wall as the horizontal movement between the concrete blocks was allowed within installation margin, and there was no dropping of the assembled concrete block.

Study on electro optic characteristic of pattern free vertical alignment (PFVA) mode using the uv curable reactive mesogen (RM) (광경화성 단분자를 이용한 pattern free vertical alignment 모드의 전기 광학 특성 연구)

  • Cho, In-Young;Hwang, Seong-Jin;Kim, Sung-Min;Hwang, Ji-Hye;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.45-46
    • /
    • 2008
  • The conventional biased vertical alignment (BVA) mode has several advantages such as rubbing- and protrusion-free, wide-viewing angle and stable LC dynamics against external pressure. However manufacturing process of BVA mode is difficult task because the pixel and bias electrode signal are different in each frame. To solve this problem, we investigated the pattern free vertical alignment (PFVA) by using the UV-curable reactive mesogen (RM), in which the LC molecules were made to be pre-tilted. Eventually transmittance and response time in PFVA mode were found to be improved as compared to BVA mode.

  • PDF