• Title/Summary/Keyword: vertical beams

Search Result 257, Processing Time 0.027 seconds

Proposals of Indeterminate Strut-Tie Model and Load Distribution Ratio for Strength Analysis of Pre-tensioned Concrete Deep Beams (프리텐션 콘크리트 깊은 보의 강도해석을 위한 부정정 스트럿-타이 모델 및 하중분배율의 제안)

  • Chae, Hyun-Soo;Ha, Sang-Yong;Yun, Young-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.193-194
    • /
    • 2009
  • In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strengths and complicated structural behavior of pre-tensioned concrete deep beams is presented. In addition, a load distribution ratio, defined as a magnitude of load transferred by a vertical truss mechanism, is proposed to help structural designers perform the strength analysis of pre-tensioned concrete deep beams by using the strut-tie model approaches of current design codes.

  • PDF

Free Vibrations of Horizontally Curved Beams with Shear Deformation (전단변형을 고려한 수평곡선보의 자유진동)

  • Shin, Seong-Cheol;Park, Kou-Moon;Lee, Jong-Kook;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.395.1-395
    • /
    • 2002
  • The ordinary differential equations governing free vibrations of elastic horizontally curved beams are derived, in which the effect of shear deformation as well as the effects of vertical deflection, rotatory and torsional inertias are included. Frequencies and mode shapes are computed numerically fer parabolic curved beams with hinged-hinged, hinged-clamped and clamped-clamped ends. Comparisons of natural frequencies between this study and ADINA are made to validate the theories and numerical methods developed herein. (omitted)

  • PDF

Free Vibrations of Horizontally Curved Beams with Rotatory Inertia and Shear Deformation (회전관성과 전단변형을 고려한 수평 곡선보의 자유진동)

  • 이병구;모정만;이태은;안대순
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • The ordinary differential equations governing free vibrations of elastic horizontally curved beams are derived, in which the effects of rotatory inertia and shear deformation as well as the effects of both vertical and torsional inertias are included. Frequencies and mode shapes are computed numerically for parabolic curved beams with the hinged-hinged, hinged-clamped and clamped-clamped ends. Comparisons of natural frequencies between this study and ADINA are made to validate the theories and numerical methods developed herein. The lowest three natural frequency parameters are reported. with and without the effects of rotatory inertia and shear deformation. as functions of the three non-dimensional system parameters: the horizontal rise to span length ratio. the slenderness ratio and the stiffness parameter.

Simplified Nonlinear Static Progressive Collapse Analysis of Steel Moment Frames (철골모멘트골조의 비선형 정적 연쇄붕괴 근사해석)

  • Lee, Cheol-Ho;Kim, Seon-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.698-703
    • /
    • 2007
  • A simplified model which incorporates the moment-axial tension interaction of the double-span beams in a column-removed steel frame is presented in this paper. To this end, material and geometric nonlinear parametric finite element analyses were conducted for the double-span beams by changing the beam span to depth ratio and the beam size within some practical ranges. The beam span to depth ratio was shown to be the most influential factor governing the catenary action of the double-span beams. Based on the parametric analysis results, a simplified piecewise linear model which can reasonably describe the vertical, resisting force versus the beam chord rotation relationship was proposed. It was also shown that the proposed method can readily be used for the energy-based progressive collapse analysis of steel moment frames.

  • PDF

Inelastic response of wide flange steel beams curved by symmetrical weak axis bending using two-point loads

  • Gergess, Antoine N.;Sen, Rajan
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.951-965
    • /
    • 2014
  • Point bending is commonly used for cambering and curving steel girders to large radii. In this system, a hydraulic ram or press is used to apply concentrated loads at selected points to obtain the required vertical (cambering) or horizontal (curving) curved profile from induced permanent deformations. This paper derives closed form solutions that relate loads to permanent deformations for horizontally curving wide flange steel beams based on their post-yield response. These solutions are presented in a parametric form to identify the relationship between key variables and their impact on the accuracy of the curving operation. It is shown that point bending could yield parabolic curved profiles that are within 1% of a desired circular curve if the span length to radius of curvature ratio (L / R) is less than 1.5 and the point loads are spaced at one third the beam length. Safe limits are then established on loads, strains and curvatures to avoid damaging the steel section. This leads to optimization of the point bending operation for inducing a circular profile in wide flange steel beams of any size.

Variations of Column Shortening with Parameters (매개변수에 따른 기둥축소량 변화에 관한 연구)

  • 정은호;김형래
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.59-67
    • /
    • 2000
  • With increased height of structure, the effect of column shortening need special consideration in the design and construction of high-rise buildings. The shortening of each column affects nonstructural members such as partitions, cladding, and M/E systems, which are not designed to carry gravity forces. The slabs and beams will tilt due to the cumulative differential shortening of adeacent vertical members. The main purpose of estimating the total shortening of vertical structural member is to compensate the differential shortening between adeacent members. This paper presents effect of parameters for phenomenon of column shortening in vertical members. The paper presents effect of parameters for phenomenon of column shortening in vertical members. The conclusions obtained from this study are follow as ; Strength of concrete and steel ratio effected on column shortening caused by elastic and inelastic shortening. Also, it is known that Ultimate-shrinkage-Value, Specific-Creep-Value, and volume to surface ratio effected on inelastic shortening only. Particularly, Ultimate-Shrinkage-Value and Specific-Creep-Value effected considerable on the amount of total column shortening.

Vibration Serviceability Evaluation of Railway Bridges Considering Bridge-train Transfer function (열차-교량 진동전달특성을 이용한 철도교량의 진동사용성 평가기법)

  • Jeon, Bub-Gyu;Kim, Nam Sik;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.359-366
    • /
    • 2009
  • This paper aims for analyzing the vibration serviceability of train by simply expressing its vertical vibration when it passes a railway bridge. For this purpose, bridge-train transfer function was derived and bridge-train interaction analysis was performed by using the derived function. The bridge-train transfer function was developed with the assumption that train is a single mass-spring system, and bridge-train interaction analysis was performed on simple beams of KTX passenger car. The vertical acceleration signals of passenger cars obtained from bridge-train interaction analysis were compared with them of cars obtained from the bridge-train transfer function. As a result, it could be estimated to express the vertical vibration inside the passenger car required for vibration serviceability evaluation by using the vertical vibration of bridges obtained from moving load analysis. Therefore, it may be possible to evaluate the vibration serviceability of railway bridges considering bridge-train interaction effect.

  • PDF

Vertical Direction Redistribution of Beam Moments in the Seismic Design of RC Frame (RC 골조의 내진설계에서 보 모멘트의 수직방향 재분배)

  • Kim, Dae-Kon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • For the lateral load resistance of a RC frame in a medium risk seismic zone, the strength of lower story beams and columns should be larger than those of the upper stories. However, the lateral loads can be accommodated by redistributing design beam moments vertically as well as horizontally so all beams end up with identical strengths. This paper looks at the impact of the vertical redistribution of beam moments to provide identical beam strength over as many floors as possible. Two-bay six-story RC frame was designed with and without vertical beam moment redistribution and its seismic performance were evaluated by using push-over limit analysis and by non-linear time history dynamic analysis. Analytical results show that with the use of vertical beam moment redistribution the increase in the ductility demand is similar to the proportion of moment redistribution applied, but this additional demand is below the ductility capacity of well detailed RC members.

Evaluation on the Shear Performance of U-type Precast Prestressed Beams (U형 PSC보외 전단거동 평가)

  • Yu Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.10-17
    • /
    • 2004
  • Shear tests were performed on four ends of full scale U-type beams which were designed by optimum process for the depth with a live load of 4903Pa. The ratio of width to depth of full scale 10.5 m-span, composite U-type beams with topping concrete was greater than 2. Following conclusions were obtained from the evaluation on the shear performance of these precast prestressed beams. 1) Those composite U-type beams performed homogeneously up to the failure load, and conformed to ACI Strength design methods in shear and flexural behaviors. 2) The anchorage requirements on development length of strand In the ACI Provisions preyed to be a standard to determine a failure pattern within the limited test results of the shallow U-type beams. 3) Those all shear crackings developed from the end of the beams did not lead to anchorage failure. However, initiated strand slip may leads the bond failure by increasing the size of diagonal shear crackings. 4) The flexural mild reinforcement around the vertical center of beam section was effective for developments of a ductile failure.

Multi-Beams modelling for high-rise buildings subjected to static horizontal loads

  • Sgambi, Luca
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.283-294
    • /
    • 2020
  • In general, the study of a high-rise building's behaviour when subjected to a horizontal load (wind or earthquake) is carried out through numerical modelling with finite elements method. This paper proposes a new, original approach based on the use of a multi-beams model. By redistributing bending and axial stiffness of horizontal elements (beams and slabs) along vertical elements, it becomes possible to produce a system of differential equations able to represent the structural behaviour of the whole building. In this paper this approach is applied to the study of bending behaviour in a 37-storey building (Torre Pontina, Latina, Italy) with a regular reinforced concrete structure. The load considered is the wind, estimated in accordance with Italian national technical rules and regulations. To simplify the explanation of the approach, the wind load was considered uniform on the height of building with a value equal to the average value of the wind load distribution. The system of differential equations' is assessed numerically, using Matlab, and compared with the obtainable solution from a finite elements model along with the obtainable solutions via classical Euler-Bernoulli beam theory. The comparison carried out demonstrates, in the case study examined, an excellent approximation of structural behaviour.