• Title/Summary/Keyword: ventilation rate

Search Result 818, Processing Time 0.028 seconds

Environmental Analyses in Rain Shelters (간이 농업시설의 환경해석)

  • 손정익
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.41-49
    • /
    • 1996
  • One of the typically simple structures in protected horticulture is the rain shelter, which is widely applied in summer regardless of its poor ventilation. To evaluate ventilation performance of rain shelters, the ventilation rate as well as inside temperature of one conventional and two improved rain shelters were predicted and compared under various wind speeds and irradiations. More accurate model in which the inside space of rain shelter was subdivided into three parts considering the crops grown, was developed. The ventilation rate of each opening and the general direction of air flow in the rain shelter can be predicted by the model. The ventilation rates as well as inside temperatures of each rain shelter obtained by the model and the actual measurement, proved that the ventilation performance of improved rain shelters were superior to that of conventional one.

  • PDF

An Experimental Study on the Ventilation Performance to Enhance Removal Efficiency of Indoor Hamful Gases (실내 유해가스 제거효율 향상을 위한 환기성능에 관한 실험적 연구)

  • Ku, Jae-Hyun
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.117-124
    • /
    • 2009
  • The objective of this research is to analyze the ventilation performance of mechanical ventilation systems to enhance removal efficiency of indoor hamful gases. The ventilation performance is evaluated using a step-down method based on ASTM Standard E741-83. The ventilation performance is evaluated as a function of the ventilation rate and supply/extract locations using a tracer gas ($CO_2$) technique. As a result, the $CO_2$ concentration as a function of time is decayed exponentially and the ventilation performance is found to increase with increased the ventilation rate. The ventilation performance of the second type ventilation system is better than that of the first type or the third type. The ventilation performance without human occupancy increases up to 55% and the ventilation performance with one person increases up to 25% at the supply air of 570Lpm comparing with a natural reduction after one hour in the test chamber. The ventilation performance is better than 15% comparing with natural decay at the supply of 570Lpm in an office room.

Estimation of Mean Air Exchange Rate and Generation Rate of Nitrogen Dioxide Using Box Model in Residence (주택에서 Box Model을 이용한 평균 환기율 및 이산화질소 발생량 추정)

  • Bae, Hyeon Ju;Yang, Won Ho;Son, Bu Sun;Kim, Dae Won
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.645-653
    • /
    • 2004
  • Indoor air quality is affected by source strength of pollutants, ventilation rate, decay rate, outdoor level, and so on. Although technologies measuring these factors exist directly, direct measurements of all factors are not always practical in most field studies. The purpose of this study was to develop an alternative method to estimate these factors by application of multiple measurements. For the total duration of 30 days, daily indoor and outdoor $NO_2$ concentrations were measured in 30 houses in Brisbane, Australia, and for 21 days in 40 houses in Seoul, Korea, respectively. Using a box model by mass balance and linear regression analysis, penetration factor (ventilation divided by sum of air exchange rate and deposition constant) and source strength factor (emission rate divided by sum of air exchange rate and deposition constant) were calculated, Sub-sequently, the ventilation and source strength were estimated. In Brisbane, the penetration factors were $0.59\pm0.14$ and they were unaffected by the presence of a gas range. During sampling period, geometric mean of natural ventilation was estimated to be $l.l0\pm1.5l$ ACH, assuming a residential $NO_2$ decay rate of 0.8 hr^{-1}$ in Brisbane. In Seoul, natural ventilation was $1.15\pm1.73$ ACH with residential $NO_2$ decay rate of 0.94 hr^{-1}$ Source strength of $NO_2$ in the houses with gas range $(12.7\pm9.8$ ppb/hr) were significantly higher than those in houses with an electric range $(2.8\pm2,6$ ppb/hr) in Brisbane. In Seoul, source strength in the houses with gas range were $l6.8\pm8.2$ ppb/hr. Conclusively, indoor air quality using box model by mass balance was effectively characterized.

The Froude Scaling Study on the Ventilation of Non-isothermal Concentrated Fume from the Semi-closed Space (반밀폐형 공간에서 비등온 고농도 연무의 배연산출량 산정을 위한 Froude 상사연구)

  • Chang, Hyuk-Sang;Choi, Byung-Il;Park, Jae-Cheul;Kim, Myung-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.877-885
    • /
    • 2005
  • The Froude scaling between the prototype and the model was tried to estimate the necessary ventilation rate for non-isothermal concentrated fume from the semi-closed inner space. Based on the non-dimensional similitude equations derived from the Zukoski plume rise analysis, the scaling experiments were done to verify the relationship of the non-dimensional energy release rate and the non-dimensional mass flow rate by using two different scaled volume models, model A ($1\;m{\times}1\;m{\times}1\;m$) and model B ($0.5\;m{\times}0.5\;m{\times}0.5\;m$). The experimental results showed that the theoretical similitude between the models is acceptable for the prediction of ventilation rate of the concentrated fume. The maximum energy release rate used for the experiments was $20\;kW/m^3$. In the experimental range, the similitude between the energy release rate and the ventilation mass flow rate was well defined and the necessary ventilation rates were 20-30% higher than the stoichiometric ventilation mass flow rate. Based on results of current study, the design of the local air ventilation system can be improved by correcting the effects of buoyancy and diffusion of the non-isothermal concentrated fume.

A Study on How to Evaluate Appropriate Ventilation Rate of Indoor Facility Handling Hazardous Substances by Their Flammable and Explosive Properties (유해화학물질을 취급하는 실내시설에서의 인화폭발성에 따른 적정 환기량 산정에 대한 연구)

  • Mansu Park;Cheong-Min Seo;Hyo-Soub Yoon;Kyoshik Park
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.293-301
    • /
    • 2024
  • Purpose: Ministry of Environment statistics reveals more than 132 fire·explosion accidents in South Korea between 2014 and 2023. Among them, fire and/or explosion accidents are very impactive in their scale and consequence. This study aims to suggest a new method of reasonable way to calculate the ventilation rate of indoor facility handling hazardous chemicals based on their inflammability. Method: A new method to calculate the ventilation rate is based on the physicochemical properties of the chemicals handled, which is more reasonable compared with the current regulation based only on the floor area of the facility. Result: Considering the physicochemical properties, 178 chemicals based on their inflammability were studied and 168(94%) met the criteria for the current regulation. Some materials have been shown to require too much or too little ventilation rate. Conclusion: Through this study, a reasonable method of calculating the required ventilation rate was proposed. This should be applied to ensure the safety of workers to deal chemicals.

Assessment of Ventilation System for Ro/Ro Ship Using CFD (전산 유체 해석에 의한 자동차 운반선 내부 환기 시스템 평가)

  • Lee, Sung-Su;Kim, Hak-Sun;Chun, Seung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.10-17
    • /
    • 2005
  • Due to emission of vehicles during loading/unloading, ventilation system in Roll-on/Roll-off ship is inevitable; however it is very difficult to predict the ventilation performance before it is finally built in. Although the requirements for the ventilation system include air change rate and maximum allowable concentration of CO in the cargo holds, even prototype tests are hardly able to quantify the ventilation performance. In the present paper, a new method to assess the ventilation performance of Roll-on/Roll-off ship is proposed by using computational fluid dynamics. The air exchange is modeled by introducing multi-species transport of existing air In the holds and new air from the ventilation system. Conservation of multi-species as well as 3D Navier-Stokes equation are solved numerically in time dependent manner. Several cases of different configuration are considered. The results include predicted mass fraction of new air in the holds. It is also presented that CO concentration can be estimated based on the predicted air change performance. Due to the lack of experimental data, the computed results are not verified; however the proposed method can be applied as au assessment tool.

Comparison of tracheal intubation using the Macintosh laryngoscope versus the intubating laryngeal mask airway in novice users - A manikin study - (초보자에서 마네킨에게 직접 후두경과 삽관용 후두마스크기도기를 이용한 기관내삽관의 비교)

  • Hwang, Ji-Young;Cho, Keun-Ja
    • The Korean Journal of Emergency Medical Services
    • /
    • v.16 no.2
    • /
    • pp.75-89
    • /
    • 2012
  • Purpose : This research was designed to provide basic data for advanced pre-hospital airway management by comparing the time to ventilation and success rate for tracheal intubation performed with Macintosh laryngoscope and intubating Laryngeal Mask Airway(ILMA) in a manikin. Methods : All participants were novice users among EMT-Paramedic students and were divided into two groups: (1) the group for Macintosh laryngoscope guided tracheal intubation(MLG-TI) (2) the group for ILMA guided tracheal intubation(ILMA-TI). After an introductory lecture and demonstration, each group made an attempt ten tracheal intubation to compare the ventilation time and success rate for tracheal intubation. Results : 1) There was significant difference in the time to ventilation through MLG-TI, the time to first and second ventilation through ILMA-TI of the 10 attempts. 2) The time to first ventilation through ILMA-TI was significantly shorter than that of ventilation through MLG-TI. 3) There was no significant difference between the time to ventilation through MLG-TI and the time to second ventilation through ILMA-TI. 4) The success rates of ILMA-TI were significantly higher than those of MLG-TI. Conclusion : ILMA-TI can be an alternative method for MLG-TI in advanced pre-hospital airway management.

Application of Solar Chimney System for Natural Ventilation in Underground Space (지하공간의 자연환기를 위한 태양 굴뚝 시스템의 응용)

  • Jang, Hyang-In;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.87-95
    • /
    • 2010
  • This study analyzed the performance of solar chimney system for natural ventilation in underground space. A mathematical model of the solar chimney was proposed in order to predict its performance under varying parameters and Korea climatic condition. Steady state heat transfer equations were set up using a energy balanced equations and solved using a inverse matrix method. Numerical simulation program to analyze system was developed by using MATLAB. As the results, the ventilation performance of the solar chimney was determined by the temperature difference of air channel and inlet, and the temperature difference was influenced by insolation, stack height and distance of air gab. Also the solar chimney system can provide $262.9m^3/h$ of annual average ventilation rate. Because seasonal differences of ventilation rate was calculated within 25%, the solar chimney system can be used for every season in Korea climatic condition. Through this study, performance of solar chimney system for natural ventilation was verified by numerical method. Consequently, the solar chimney system is proved to be effective device for natural ventilation utilizing at all times, and the additional studies should be made through the experimental method for imagineering and commercialization.

A Study on a Graphical Method for Determining the Characteristics of Jet-fan Ventilation System using the Contour Map of Required Ventilation Rate in Local Highways (지역별 소요환기량 특성도를 활용한 제트팬 환기방식 가능 터널제원 결정연구)

  • 김효규;김화수;김종대;이창우
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.235-243
    • /
    • 2003
  • Recent worldwide trends show that tunnel length is getting longer, and the demand for longitudinal ventilation system with jet-fans in highway tunnels has also increased mainly due to the economic reasons. Improvements in vehicle engine subsequently reduced required ventilation rate(Qreq) which is the decisive factor in choosing the optimal ventilation system. Qreq contour map is a graph that defines the relationship among tunnel length, grade and required ventilation rate. It is important to understand the variation of Qreq in order to evaluate the characteristics of ventilation system with jet fans. Therefore this study aims at studying a graphical method for determining the characteristics of jet-fm ventilation system using Qreq contour map. Also, this study focuses on traffic composition on local highways.

Comparative Study on Efficiencies of Naturally-Ventilated Multi-Span Greenhouses in Korea (다연동 온실의 자연환기효율성 비교 분석)

  • Kwon, Soon-Hong;Jung, Sung-Won;Kwon, Soon-Gu;Park, Jong-Min;Choi, Won-Sik;Kim, Jong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.8-18
    • /
    • 2017
  • This research analyzed the ventilation effect of the multi-span greenhouse based on the types of greenhouse structure, weather conditions, and locations inside the greenhouse. To compare and analyze the ventilation effects with different types of greenhouse, the uniform environmental conditions should be selected in advance. But these factors are not controlled and require tense many precision facilities and labor forces. Thus, the CFD simulation was used for the air stream to be analyzed qualitatively and quantitatively. In addition, for the ventilation effect analysis, the TGD (Tracer Gas Decay) was used to overcome the shortcomings of the current ventilation measurement method. The calculation error of ventilation rate using TGD was low (10.5%). Thus, the TGD is very effective in calculating the ventilation efficiency. The wind direction of 90 degrees showed the best ventilation effect. The ventilation rate also decreased along the air circulation path, and the rate was the lowest around the outlet. The computed fluid method (CFD) turned out to be a power tool for simulating flow behavior in greenhouse.