• Title/Summary/Keyword: ventilation method

Search Result 744, Processing Time 0.023 seconds

An Experimental Study of Ventilation Effectiveness in Mechanical Ventilation systems using a Tracer Gas Method

  • Lee, Jae keun;Kang, Tae-Wook;Lee, Kam-Gyu;Cho, Min-Chul;Shin, Jin-Hyuk;Kim, Seong-Chan;Koo, Jeong-Hwan;Lee, Jong ho
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1286-1295
    • /
    • 2000
  • The ventilation effectiveness is evaluated as a function of air exchange rate and supply / extract locations in a simplified model chamber using a tracer gas technique of CO$_2$ gas injected into a supply duct. Ventilation systems consist of supply and extract fans, a CO$_2$gas generator, a CO$_2$gas analyzer and a test chamber. The ventilation effectiveness is evaluated using a step-down method based on ASTM Standard E741-83. The room mean age of the model chamber is decreased with increasing air exchange rate fanged from 6to 10 air changes per hour. The ventilation effectiveness of the mechanical inlet/natural extract system is better than that of the mechanical extract system.

  • PDF

Investigation on Ventilation Mmethod and Recognition of Users in Healthcare Facilities of KOREA (국내 의료기관의 환기설비 운영실태 및 인식 조사)

  • Jo, Seongmin;Sung, Minki
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.2
    • /
    • pp.7-14
    • /
    • 2018
  • Purpose: The outbreak of Middle East Respiratory Syndrome(MERS) in KOREA has brought up the demands for ventilation guideline and regulations for healthcare facilities since most of the infection was spreaded inside healthcare facility. Currently KOREA has no ventilation guideline or regulations covering entire section of healthcare facility. The purpose of this study is to investigate current ventilation methods in KOREA healthcare facilities to in future, propose ventilation guideline. Methods: Research of foreign counties ventilation guideline and regulation for healthcare facilities were conducted for reference. Field investigation with survey of 21 healthcare were conducted to identify the ventilation system and operating methods. Additionally survey for healthcare workers were conducted to observe the recognition related to ventilation system in healthcare facility. Results: The result showed that most of foreign countries ventilation guideline and regulation suggests similar items to reduce the spread of infection and maintain good indoor air quality. The investigation results indicated that fixed guideline for ventilation in healthcare facility were required due to different ventilation operating methods. Survey result of healthcare workers has told us that ventilation guideline and regulation is needed to prevent further infection. Implications: Absence of ventilation guideline and regulations for healthcare facility in KOREA is an urgent issue.

Experimental Study on Wind-driven Ventilation in Basement Parking Lots of Apartment (풍동실험을 통한 공동주택 지하주차장의 자연환기 성능 연구)

  • Lee, Si-Woong;Roh, Ji-Woong
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.103-107
    • /
    • 2004
  • This paper aims for evaluating the wind-driven ventilation in basement parking lots of apartment. Wind tunnel tests coupled with tracer gas method were conducted, and classified by wind directions and opening types. The test results showed that, as for wind-driven ventilations, stack type openings were more successful than scuttle vent. Finally, according to Weibull distribution in Seoul, yearly averaged wind-driven ventilation rate was calculated.

A Study on the Improvement of Ventilation Effectiveness in High-rise Apartment Buildings (초고층 공동주택의 환기효율 개선에 관한 연구)

  • Park, Jin-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.87-94
    • /
    • 2006
  • The efficiency of ventilation system is one of the most important issues of designing ventilation in high-rise apartment buildings. The purpose of this study is to analyze the ventilation efficiency of ventilation system by experimental study using CO2 gas method. The results of this paper can be summarized as follows; (1) An appropriate ventilation including opening planning, mechanical and hybrid system are required. (2) The supply diffuser of ventilation system should be located near the contaminant source. (3) The return grill should be located along with supply diffuser for proper ventilation. and the return grill should be located near or right above the contaminant source. (4) However, the supply location right above the contaminant source has to be avoided. and the supply diffuser should be installed in module with return grill increase ventilation effectiveness.

Method of Ventilation by Gas Chromatography and the Effects of the Type of Blouse (G.C를 이용한 Ventilation 측정방법과 Ventilation에서의 블라우스형태변화의 영향)

  • Park Woo Mee;Choi Chul Ho
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.16 no.1 s.41
    • /
    • pp.53-63
    • /
    • 1992
  • The purpose of this study is to investigate the method of trace gas technique by G.C and the effects of the type of blouse on ventilation. The experimental system employed a trace gas technique in which ventilation was monitored to determine oxigen exchange rate. The experimental variables were tested with three types of blouse depending on the sizes of neckline, armhole and waist line. Exercise conditions include standing and walking position. The results and discussion forcused on the construct validity of the apparatus/testing protocol. the effect of experimental variables on ventilation was also discussed.

  • PDF

Hydrodynamic analysis of the surface-piercing propeller in unsteady open water condition using boundary element method

  • Yari, Ehsan;Ghassemi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.22-37
    • /
    • 2016
  • This article investigates numerical modeling of surface piercing propeller (SPP) in unsteady open water condition using boundary element method. The home code based on BEM has been developed for the prediction of propeller performance, unsteady ventilation pattern and cross flow effect on partially submerged propellers. To achieve accurate results and correct behavior extraction of the ventilation zone, finely mesh has generated around the propeller and especially in the situation intersection of propeller with the free surface. Hydrodynamic coefficients and ventilation pattern on key blade of SPP are calculated in the different advance coefficients. The values obtained from this numerical simulation are plotted and the results are compared with experiments data and ventilation observations. The predicted ventilated open water performances of the SPP as well as ventilation pattern are in good agreement with experimental data. Finally, the results of the BEM code/experiment comparisons are discussed.

A Study on Characteristic Analysis for Indoor Ventilation Performance of Mechanical Ventilation System (기계 환기시스템의 실내 환기성능 특성 해석에 관한 연구)

  • Ku, Jae-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.31-37
    • /
    • 2012
  • This paper describes to analyze the ventilation performance of a room air conditioner for indoor comfort control. An experimental apparatus consists of a test room, the room air conditioner, a tracer gas measurement system, a supply fan and a controller. Ventilation performance as a function of human occupancy is evaluated with supply ventilation air using a tracer gas technique of CO2 gas in the test room. The ventilation performance is evaluated in a step-down method based on ASTM Standard E741-83 and is found to increase with increasing supply ventilation rate. The CO2 gas concentration is decayed rapidly without human occupancy. The ventilation performance without human occupancy increases up to 55% and the ventilation performance with one person increases up to 25% at the supply air of 570 lpm comparing with a natural reduction after one hour. A modeling for ventilation performance of a room air conditioner in a test room is presented using experimental datum.

Estimation of Ventilation and Generation Rates Using Nitrogen Dioxide Measurements of Indoor and Outdoor in Houses (주택 실내.외 이산화질소 측정을 이용한 환기량 및 발생량 추정)

  • Yang, Won-Ho;Im, Sung-Guk;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.17 no.10
    • /
    • pp.1069-1073
    • /
    • 2008
  • Indoor air quality can be affected by indoor sources, ventilation, decay and outdoor levels. Although technologies exist to measure these factors, direct measurements are often difficult. The purpose of this study was to develop an alternative method to characterize indoor environmental factors by multiple indoor and outdoor measurements. Using a mass balance model and regression analysis, penetration factor (ventilation rate divided by the sum of ventilation rate and deposition constant) and source strength factor (source strength divided by the sum of ventilation rate and deposition constant) were calculated using multiple indoor and outdoor measurements. Subsequently, the ventilation rate and $NO_2$ generation rate were estimated. Mean of ventilation rate was 1.41 ACH in houses, assuming a residential N02 deposition constant of 0.94 $hr^{-1}$. Mean generation rate of $NO_2$ was 16.5 ppbv/hr. According to house characterization, inside smoking and family number were higher $NO_2$ generation rates, and apartment was higher than single-family house. In conclusion, indoor environmental factors were effectively characterized by this method using multiple indoor and outdoor measurements.

Assessment of Ventilation System for Ro/Ro Ship Using CFD (전산 유체 해석에 의한 자동차 운반선 내부 환기 시스템 평가)

  • Lee, Sung-Su;Kim, Hak-Sun;Chun, Seung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.10-17
    • /
    • 2005
  • Due to emission of vehicles during loading/unloading, ventilation system in Roll-on/Roll-off ship is inevitable; however it is very difficult to predict the ventilation performance before it is finally built in. Although the requirements for the ventilation system include air change rate and maximum allowable concentration of CO in the cargo holds, even prototype tests are hardly able to quantify the ventilation performance. In the present paper, a new method to assess the ventilation performance of Roll-on/Roll-off ship is proposed by using computational fluid dynamics. The air exchange is modeled by introducing multi-species transport of existing air In the holds and new air from the ventilation system. Conservation of multi-species as well as 3D Navier-Stokes equation are solved numerically in time dependent manner. Several cases of different configuration are considered. The results include predicted mass fraction of new air in the holds. It is also presented that CO concentration can be estimated based on the predicted air change performance. Due to the lack of experimental data, the computed results are not verified; however the proposed method can be applied as au assessment tool.

Comparison of quality of 30:2 vs. 2:30 CPR in manikins (심폐소생술 방법 변화에 따른 quality 비교 - 30:2와 2:30 비교분석실험 -)

  • Uhm, Tai-Hwan;Yoou, Soon-Kyu;Choi, Hea-Kyung;Jung, Ji-Yeon
    • The Korean Journal of Emergency Medical Services
    • /
    • v.14 no.3
    • /
    • pp.71-81
    • /
    • 2010
  • Purpose: To minimize an interruption in chest compression, reduce the hands-off time, the American Heart Association has recommended the ratio of chest compression to ventilation ratio to 30:2 from 2005 CPR guideline to 2010 CPR guideline. However, current studies have shown that the hands-off time was > 10 seconds with that method. For this reason, we devised new CPR method that a ventilation to chest compression ratio of 2:30 to reduce pt assessment time and skipped the assessment step of carotid artery pulse would be a more effective way to reduce the hands-off time & the time to set the CPR. According to the more detailed purpose are listed below. 1) We would like to confirm efficiency of a ventilation to chest compression ratio of 2:30 than a chest compression to ventilation ratio of 30:2 to reduce the hands-off time & the time to set the CPR. 2) We would like to evaluate possibility of increasing for chest compression accuracy of a ventilation to chest compression ratio of 2:30 than a chest compression to ventilation ratio of 30:2 3) We would like to evaluate possibility of increasing for ventilation accuracy of a ventilation to chest compression ratio of 2:30 than a chest compression to ventilation ratio of 30:2 Methods: According to 2005 American Heart Association Guidelines, 60 paramedic students(20 students X freshmen, sophomore, junior) performed 5 cycles of 3~ chest compressions : 2 ventilations after A, B, C evaluation with Laerdal Resusci R Anne SkillReporters. After 5 minutes rest, the 60 students performed 5 cycles of 2 ventilations : 30 chest compressions after A, B evaluation with the manikins between 13 and 17 September 2010. The short reports including speed & accuracy of chest compression, respiratory, CPR cycle were gained from the manikins. Hands-off times were measured by assistants. Results: Recently, the importance of high quality CPR was emphasized in order to perform the CPR faster and more accurate. To find out improving the conventional CPR method, we switch the procedure of the compression and the ventilation. By switching the procedure back and forth, we are able to compare the effectiveness of CPR between two type of CPR method which are 2:30 and 30:2 methods. 2:30 is that the breaths is delivered twice, first and perform 30 compressions while 30:2 perform 30 compressions first and give 2 breaths followed by the ABC method. Also, we verify the effectiveness of the hands off time, compression accuracy of the compression through the comparison of the two procedure as mentioned earlier. Consequently research verified that 2:30 is the efficient by providing faster set up delivering more accurate chest compression. Conclusion: 2:30 can minimize a time delay from cardiac standstill until starting the chest compression. In addition, hands-off time which is an interruption in chest compression can be shortened by 2:30 method, which result to effective oxygenation of coronary artery & maintenance of the bloodstream. Once again, performing the 2:30 method provide lessen hands off time and increase the accuracy of the chest compression.

  • PDF