• Title/Summary/Keyword: vent area

Search Result 78, Processing Time 0.02 seconds

A Layered Felsic Diatreme near Weolseong, Kyeongsang Nam Do, Korea (층상형(層狀型)의 규장암질(珪長岩質) DIATREME)

  • Park, Ki-Hwa;Kim, Seon-Eok
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.357-368
    • /
    • 1985
  • The Weolseong diatreme crops out about 28km south of Kyeongju City, Korea. The diatreme is a circular shaped volcanic vent, 1.2km in diameter, that formed subaerially, probably by phreatomagmatic (phreatoplinian) eruptions of Tertiary age. The rocks occupying the display well developed layering produced by base surge and proximal ba11istic fall. Accretionary lapilli are a common component. The rocks comprise tuff breccia and fine-grained rock derived from the vent walls. This sequence has undergone subsidence of at least over 650m. Most explanations for the presence of bedded tuffs at considerable depths within a volcanic pipe involve subsidence. Comparable amount of subsidence are recorded in many diatremes in other parts of the world. The ore body is distinctly circular and funnel shaped in center of diatreme. The vent area of diatreme served as channel ways for the mineralized hydrothermal fluids.

  • PDF

Experimental Study on the Effect of the Area Ratio between Shaft and Tunnel and Heat Release Rate on the Plug-holing Phenomena in Shallow Underground Tunnels (저심도 도로터널에서 터널과 수직환기구의 단면적 비와 열방출률이 Plug-holing 현상에 미치는 영향에 관한 실험연구)

  • Hong, Kibea;Na, Junyoung;Ryou, Hong Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.619-625
    • /
    • 2019
  • It is difficult to design because of the plug-holing phenomenon in which the amount of smoke discharged from the vertical vent is smaller than the designed amount of smoke. In this study, the effect of cross-sectional area ratio of tunnel and natural ventilation and heat release rate of fire source on plug-holing phenomenon occurring in natural ventilation system was experimentally analyzed. In the experiment model reduced to 1/20 size, the aspect ratio of the tunnel and the vertical vent was fixed, and the influence on the plug-holing phenomenon was confirmed by varying the sectional area ratio of the tunnel and the vertical vent. Experimental results show that the plug-holing phenomenon is caused by the comparison of the smoke boundary layer temperature with the temperature in the vertical vents, and the flow and temperature distribution characteristics under the vertical vents are changed as the cross-sectional area ratio of the tunnel and vertical vents increases. The plug-holing phenomenon is affected by the cross-sectional area ratio between the tunnel and the vertical ventilation. The greater the cross-sectional area ratio, the greater the probability of plug-holing.

One-cyclic Volcanic Processes at Udo Crater, Korea (우도(牛島) 분화구(噴火口)에서의 일윤회(一輪廻) 화산과정(火山過程))

  • Hwang, Sang Koo
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.55-65
    • /
    • 1993
  • Udo Island, some 3 km off the coast of Sungsan Peninsula at the eastern promontory of Cheju Island, occurs in such a regular pattern on the sequences which reprent an excellent example of an eruptive cycle. The island comprises a horseshoe-shaped tuff cone, a nested cinder cone on the crater floor, and a lava delta which extends over northwest from the moat between two cones. The volcanic sequences suggest volcanic processes that start with emergent Surtseyan eruption, progress through Strombolian eruption and end with lava effusion followed by reworking of smooth tephra on the tuff cone. Eruptive environment and hydrology of vent area in the Udo tuff cone are poorly constrained because the stratigraphic units under the tuff cone are unknown. It is thoughl, however, that the tuff cone could be mainly emergent because the present cone deposits show no evidence of marine reworking, and standing body of sea water could play a great role. The emergent volcano is characterized by distinctive steam-explosivity that results primarily from a bulk interaction between rapidly ascending magma and a highly mobile slurry. The sea water gets into the vent by flooding accross or through the top or breach of tephra cone. Udo tuff cone was constructed from Surtseyan eruption which went into with tephra finger jetting activities in the early stage, late interspersed with continuous uprush activities and proceeded to only continuous uprush activities in the last. When the enclosure of the vent by a long-lived tephra barrier would prevent the flooding and thus allow the vent to dry out, the Surtseyan eruption ceased to transmit into Strombolian activities, which constructed a cinder cone on the crater floor of the tuff cone. The Strombolian eruption ceased when magma in the conduit gradually became depleted in gas. In the case of Udo, the last magmatic activity was Hawaiian-type (and/or fountain) which accumulated basalt lava delta. And then the loose tephra of the tuff cone reworked over the moat lava and the northeastern flank.

  • PDF

Thermococcus onnurineus sp. nov., a Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent Area at the PACMANUS Field

  • Bae, Seung-Seob;Kim, Yun-Jae;Yang, Sung-Hyun;Lim, Jae-Kyu;Jeon, Jeong-Ho;Lee, Hyn-Sook;Kang, Sung-Gyun;Kim, Sang-Jin;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1826-1831
    • /
    • 2006
  • A novel hyperthermophilic, anaerobic, heterotrophic archaeon, designated strain $NA1^T$, was isolated from a deep-sea hydrothermal vent area (depth, 1,650 m) within the Papua New Guinea-Australia-Canada-Manus (PACMANUS) field. Cells of this strain were motile by means of polar flagella, coccoid-shaped with a diameter of approximately $0.5-1.0{\mu}m$, and occurred as single cells. Optimal temperature, pH, and NaCl concentration for growth were $80^{\circ}C$, 8.5, and 3.5%, respectively. The new isolate was an obligate heterotroph that utilized yeast extract, beef extract, tryptone, peptone, casein, and starch as carbon and energy sources. Elemental sulfur was required for growth and was reduced to hydrogen sulfide. The G+C content of the genomic DNA was 52.0 mol%. Phylogenetic analysis of the 16S rRNA gene indicated that strain $NA1^T$ belongs to the genus Thermococcus, and the organism is most closely related to T. gorgonarius, T. peptonophilus, and T. celer; however, no significant homology was observed among species by DNA-DNA hybridization. Strain $NA1^T$ therefore represents a novel species for which the name Thermococcus onnurineus sp. novo is proposed. The type strain is $NA1^T$ (=KCTC 10859, =JCM 13517).

An Examination on the Dispersion Characteristics of Boil-off Gas in Vent Mast Exit of Membrane Type LNG Carriers (멤브레인형 LNG선박 화물탱크 벤트 마스트 출구에서의 BOG 확산 특성에 관한 연구)

  • Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • Liquefied gas carriers generally transport cargoes of flammable or toxic nature. Since these cargoes may cause an explosion, fire or human casualty, the accommodation spaces, service spaces and control stations of liquefied gas carriers should be so located as to avoid ingress of gas. For this reason, the paragraph 8.2.9 of IGC Code in IMO requires that the height of vent exits should be not less than B/3 or 6 m whichever is greater, above the weather deck and 6 m above the working area and the fore and aft gangway to prevent any concentration of cargo vapor or gas at such spaces. Besides as known, the LNG market has been growing continually, which has led to LNG carriers becoming larger in size. Under this trend, the height of a vent will have to be raised considerably since the height of a vent pipe is generally decided by a breadth of a corresponding vessel. Accordingly, we have initiated an examination to find an alternative method which can be used to determine the safe height of vent masts, instead of the current rule requirement. This paper describes the dispersion characteristics of boil-off gas spouted from a vent mast under cargo tank cool-down conditions in the membrane type LNG carriers.

Cooling Characteristics of Fruits and Vegetables for Pressure Cooling (차압통풍 예냉 청과물의 냉각특성)

  • 윤홍선;박경규
    • Food Science and Preservation
    • /
    • v.4 no.3
    • /
    • pp.237-243
    • /
    • 1997
  • Numerous variables affect product cooling rate of pressure cooling system for fruits and vegetables. These include carton vent area, initial and desired final product temperature, flow rate and temperature of the cooling air, product size, shape and thermal properties and product configuration(whether in bulk or packed in shipping cartons). This study was carried out to determine the influence of each of these variables as they affect cooling time. The opening ratio and number of the vent hole were recomended as 4∼10% and 2∼4ea., respectively, for a minimum alt flow resistance and for a uniform air flow pattern. In the cooling experiment for tomatoes and mandarins, optimum air flow rate was 0.04 m3/min.kg in terms of energy saving. The cooling air temperature should be about 2$^{\circ}C$ less than the desired final product temperature for reducing cooling time.

  • PDF

Flow Analysis of the Air Pocket in Draw Die (드로우 금형의 에어포켓 유출 유동해석)

  • Hwang, Se-Joon;Park, Warn-Gyu;Kim, Chul;Oh, Se-Wook;Cho, Nam-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.345-348
    • /
    • 2006
  • In sheet metal forming process using press and draw die some defect can be made because of the high pressure of air pocket between draw die and the product. The purpose of this study is to develop a program to decide an optimal combination of air vent hole size and number to prevent those defect on product. The air inside air pocket is considered as ideal gas and the compression and expansion is assumed as isentropic process. The mass flow is computed in two flow condition: unchocked and chocked condition. The present computation obtains required cross-sectional area of air vent hole for not exceeding the user specified pressure such as the pressure for yielding strength of the product or the pressure for unchocked flow. To validate the program the present results are compared with the results of other researchers and commercial CFD code.

  • PDF

Evaluation and countermeasure for Environmental Noise during Plant Commissioning Process in Thermal Power Plant (화력발전소 시운전시 인근에 미치는 소음영향 및 대책)

  • Kim, Yeon-Whan;Koo, Jae-Raeyang;Kim, Hee-Soo;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.897-902
    • /
    • 2001
  • This paper describes the evaluation of noise influence for residental and boundary areas in 75MW thermal power plant. It includes the measurements of noise level around the boundary area of the plant, identification of noise propagating path, and discussion on the measures. Noise assessments are carried out based on the ISO 3744, ISO 9613-1 and ISO 9613-2 to predict the noise distribution of specific locations from the noise sources such as power transformers, flash vent-pipe, I.D.fan, and stack. It is identified the vent-pipe of flash tank in thermal power plant as the root cause of the environmental noise during the plant commissioning process.

  • PDF

An Empirical Evaluation of Safety of the Common Vent Structure for Stationary Fuel Cell Systems (건물용 연료전지 복합배기구조 안전 실증평가)

  • LEE, EUN-KYUNG;LEE, JUNG-WOON;MOON, JONG-SAM;LEE, SEONG-HEE;SHIN, DONG-HUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.596-605
    • /
    • 2018
  • Interest in hydrogen, as an energy carrier, has been growing to solve the problems on shortage of fossile fuels and greenhouse gas. According to the standard KGS FU 551 for stationary fuel cell installation, the fuel cell system could be connected up to two common exhausts to one floor. depending on the required power for building or the installation environment in buildings, multiple fuel cell systems could be installed. Afterwards the number of perforations and flues could be decided. Hence, economic efficiency in significantly determined with respect to installation area and the number of fuel cell systems. In addition, the complexity of common vent structure for stationary fuel cell systems could be changed. In this paper, Verification experiments were conducted by connecting the common exhaust system to the fuel cell simulation system and the actual fuel cell system. Humidity and temperature were changed at ON/OFF, but no factors were found to affect performance or system malfunction. Exhaust emissions were also measured to obtain optimized values. We intend to expand the diffusion of stationary fuel cells by verifying safety of common exhaust structure.

The Exploration Methodology of Seafloor Massive Sulfide Deposit by Use of Marine Geophysical Investigation (해양 지구물리 탐사를 이용한 해저열수광상 부존지역 탐지 방법)

  • Kim, Hyun-Sub;Jung, Mee-Sook;Kim, Chang-Hwan;Kim, Jong-Uk;Lee, Kyeong-Yong
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.167-176
    • /
    • 2008
  • Lau basin of the south Pacific, as an active back arc basin, is promising area bearing seafloor massive hydrothermal deposit that is located in a subduction zone between the Pacific ocean plate and Indo-Australian continental plate. We performed multi-beam bathymetry survey in the Lau basin using EM120, to find out high hydrothermal activity Bone. Fonualei Rift and Spreading Center (FRSC) and Mangatolou Triple Junction (MTJ) area were selected for precise site survey through seafloor morphology investigation. The result of surface and deep-tow magnetometer survey showed that Central Anomaly Magnetization High (CAMH) recorded which is associated with active ridge in FRSC-2 and revealed very low magnetic anomalies that can be connected to past or present high hydrothermal activity in MTJ-1 seamount area. Moreover, the physical and chemical tracers of hydrothermal vent flume, i.e., transmission, hydrogen ion concentration (pH), adenosine triphosphate (ATP), methane (CH4) by use of CTD system, showed significant anomalies in those areas. From positive vent flume results, we could conclude that these areas were or are experiencing very active volcanic activities. The acquired chimney and hydrothermal altered bed rock samples gave us confidence of the existence of massive hydrothermal deposit. Even though not to use visual exploration equipment such as ROV, DTSSS, etc., traditional marine geophysical investigation approach might be a truly cost-effective tool for exploring seafloor hydrothermal massive deposit.