• Title/Summary/Keyword: velocity information

Search Result 2,089, Processing Time 0.032 seconds

Kinematic Correction and a Design for Velocity Trajectory to Reduce an Odometer Error of Wheeled-Mobile Robots (구륜 이동 로봇의 주행오차 감소를 위한 기구학적 보정과 속도궤적의 설계)

  • Kim, Jong-Su;Mun, Jong-U;Park, Jong-Guk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.3
    • /
    • pp.9-18
    • /
    • 2000
  • This paper presents methods for reducing odometer errors caused by kinematic imperfections in wheeled mobile robots. Wheel diameters and wheelbase are corrected by using encoders without landmarks. And a new velocity trajectory is proposed that compensates for an orientation error due to acceleration-resolution constraints on motor controllers. Based on this velocity trajectory, the wheel velocity of one out of two driven wheels may be changed by the traveled distance of the mobile robot. It is shown that a wheeled mobile robot can't move along a straight line exactly, even if kinematic correction are achieved perfectly, and this phenomenon is attributable to acceleration-resolution constraints on motor controllers. We experiment on a wheeled mobile robot with 2 d.o.f. and discuss the results.

  • PDF

$H_{\infty}$ filter for flexure deformation and lever arm effect compensation in M/S INS integration

  • Liu, Xixiang;Xu, Xiaosu;Wang, Lihui;Li, Yinyin;Liu, Yiting
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.626-637
    • /
    • 2014
  • On ship, especially on large ship, the flexure deformation between Master (M)/Slave (S) Inertial Navigation System (INS) is a key factor which determines the accuracy of the integrated system of M/S INS. In engineering this flexure deformation will be increased with the added ship size. In the M/S INS integrated system, the attitude error between MINS and SINS cannot really reflect the misalignment angle change of SINS due to the flexure deformation. At the same time, the flexure deformation will bring the change of the lever arm size, which further induces the uncertainty of lever arm velocity, resulting in the velocity matching error. To solve this problem, a $H_{\infty}$ algorithm is proposed, in which the attitude and velocity matching error caused by deformation is considered as measurement noise with limited energy, and measurement noise will be restrained by the robustness of $H_{\infty}$ filter. Based on the classical "attitude plus velocity" matching method, the progress of M/S INS information fusion is simulated and compared by using three kinds of schemes, which are known and unknown flexure deformation with standard Kalman filter, and unknown flexure deformation with $H_{\infty}$ filter, respectively. Simulation results indicate that $H_{\infty}$ filter can effectively improve the accuracy of information fusion when flexure deformation is unknown but non-ignorable.

Detection of Fall Direction using a Velocity Vector in the Android Smartphone Environment (안드로이드 스마트폰 환경에서 속도벡터를 이용한 넘어짐 방향 판단 기법)

  • Lee, Woosik;Song, Teuk Seob;Youn, Jong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.336-342
    • /
    • 2015
  • Fall-related injuries are the most common cause of accidental death for the elderly and the most frequent work-related injuries in construction sites. Due to the growing popularity of smartphones, there has been a number of research work related to the use of sensors embedded in the smartphone for fall detection. Falls can be detected easily by measuring the magnitude and direction of acceleration vectors. In general, the direction of the acceleration vector does not show the object movement, but the velocity vector directly indicates the tangential direction in which the object is moving. In this paper, we proposed a new method for computing the fall direction based on the characteristics of the velocity vector extracted from the accelerometer.

Analysis of Korea's Crustal Movement Velocity After the Great Tohoku-Oki Earthquake by Using GPS (GPS를 이용한 토호쿠 대지진 이후 한반도 지각변동 속도 분석)

  • Ha, Ji-Hyun;Lee, Myong-Kun;Cho, Young-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.600-608
    • /
    • 2013
  • The great Tohoku-oki earthquake which occurred on March 11, 2011, caused crustal movements in both Korea and Japan. This study attempts to analyze velocity changes of crustal movement of Korea Peninsula due to the Tohoku-oki earthquake and to compare the calculation with precious crustal movenents of Korea Peninsula. We found that the crustal movement velocity of South Korea increased 3.9 mm/yr northward and 7.5 mm/yr eastward on average as a result of the Tohoku-oki earthquake; when this figure is compared with the past crustal movement velocities of the Korea Peninsula.

Automatic 3D soil model generation for southern part of the European side of Istanbul based on GIS database

  • Sisman, Rafet;Sahin, Abdurrahman;Hori, Muneo
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.893-906
    • /
    • 2017
  • Automatic large scale soil model generation is very critical stage for earthquake hazard simulation of urban areas. Manual model development may cause some data losses and may not be effective when there are too many data from different soil observations in a wide area. Geographic information systems (GIS) for storing and analyzing spatial data help scientists to generate better models automatically. Although the original soil observations were limited to soil profile data, the recent developments in mapping technology, interpolation methods, and remote sensing have provided advanced soil model developments. Together with advanced computational technology, it is possible to handle much larger volumes of data. The scientists may solve difficult problems of describing the spatial variation of soil. In this study, an algorithm is proposed for automatic three dimensional soil and velocity model development of southern part of the European side of Istanbul next to Sea of Marmara based on GIS data. In the proposed algorithm, firstly bedrock surface is generated from integration of geological and geophysical measurements. Then, layer surface contacts are integrated with data gathered in vertical borings, and interpolations are interpreted on sections between the borings automatically. Three dimensional underground geology model is prepared using boring data, geologic cross sections and formation base contours drawn in the light of these data. During the preparation of the model, classification studies are made based on formation models. Then, 3D velocity models are developed by using geophysical measurements such as refraction-microtremor, array microtremor and PS logging. The soil and velocity models are integrated and final soil model is obtained. All stages of this algorithm are carried out automatically in the selected urban area. The system directly reads the GIS soil data in the selected part of urban area and 3D soil model is automatically developed for large scale earthquake hazard simulation studies.

Discontinuity in GNSS Coordinate Time Series due to Equipment Replacement

  • Sohn, Dong-Hyo;Choi, Byung-Kyu;Kim, Hyunho;Yoon, Hasu;Park, Sul Gee;Park, Sang-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.287-295
    • /
    • 2022
  • The GNSS coordinate time series is used as important data for geophysical analysis such as terrestrial reference frame establishment, crustal deformation, Earth orientation parameter estimation, etc. However, various factors may cause discontinuity in the coordinate time series, which may lead to errors in the interpretation. In this paper, we describe the discontinuity in the coordinate time series due to the equipment replacement for domestic GNSS stations and discuss the change in movement magnitude and velocity vector difference in each direction before and after discontinuity correction. To do this, we used three years (2017-2019) of data from 40 GNSS stations. The average magnitude of the velocity vector in the north-south, east-west, and vertical directions before correction is -12.9±1.5, 28.0±1.9, and 4.2±7.6 mm/yr, respectively. After correction, the average moving speed in each direction was -13.0±1.0, 28.2±0.8, and 0.7±2.1 mm/yr, respectively. The average magnitudes of the horizontal GNSS velocity vectors before and after discontinuous correction was similar, but the deviation in movement size of stations decreased after correction. After equipment replacement, the change in the vertical movement occurred more than the horizontal movement variation. Moreover, the change in the magnitude of movement in each direction may also cause a change in the velocity vector, which may lead to errors in geophysical analysis.

Early adjusting damping force for sloped rolling-type seismic isolators based on earthquake early warning information

  • Hsu, Ting-Yu;Huang, Chih-Hua;Wang, Shiang-Jung
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 2021
  • By means of installing sloped rolling-type seismic isolators (SRI), the horizontal acceleration transmitted to the to-be-protected object above can be effectively and significantly reduced under external disturbance. To prevent the maximum horizontal displacement response of SRI from reaching a threshold, designing large and conservative damping force for SRI might be required, which will also enlarge the transmitted acceleration response. In a word, when adopting seismic isolation, minimizing acceleration or displacement responses is always a trade-off. Therefore, this paper proposes that by exploiting the possible information provided by an earthquake early warning system, the damping force applied to SRI which can better control both acceleration and displacement responses might be determined in advance and accordingly adjusted in a semi-active control manner. By using a large number of ground motion records with peak ground acceleration not less than 80 gal, the numerical results present that the maximum horizontal displacement response of SRI is highly correlated with and proportional to some important parameters of input excitations, the velocity pulse energy rate and peak velocity in particular. A control law employing the basic form of hyperbolic tangent function and two objective functions are considered in this study for conceptually developing suitable control algorithms. Compared with the numerical results of simply designing a constant, large damping factor to prevent SRI from pounding, adopting the recommended control algorithms can have more than 60% reduction of acceleration responses in average under the excitations. More importantly, it is effective in reducing acceleration responses under approximately 98% of the excitations.

Design of Navigation Filter for Underwater Glider (수중글라이더용 항법필터 설계)

  • Yoo, Tae Suk;Cha, Ae Ri;Park, Ho Gyu;Kim, Moon Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1890-1897
    • /
    • 2022
  • In this paper, we design a navigation filter for an underwater glider. Underwater gliders are low-cost, reusable, and can be used for a long time. Two types of filters are designed considering characteristics such as small size, low cost, and low power. The navigation filter estimates the reference velocity of the underwater glider's body frame based on the minimum sensor output. The sensor configuration of the first filter consists of an accelerometer, a magnetometer, and a depth sensor. the second filter include extra a gyroscope in the same configuration. The estimated velocity is fused with the attitude, converted into the velocity of the navigation frame and finally the position is estimated. To analyze the performance of the proposed filter, analysis was performed using Monte Carlo numerical analysis method, and the results were analyzed with standard deviation (1σ). Standard deviations of each filter's position error are 334.34m, 125.91m.

COMPUTATION AND ANALYSIS OF MATHEMATICAL MODEL FOR MOVING FREE BOUNDARY FLOWS

  • Sohn, Sung-Ik
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.779-791
    • /
    • 2000
  • The nonlinear stage of the evolution of free boundary between a light fluid and a heavy fluid driven by an external force is studied by a potential flow model with a source singlarity. The potential flow model is applied to a bubble and spije evolution for constantly accelerated interface (Rayleigh-Taylor instability) and impulsively accelerated interface (Richtmyer-Meshkow instability). The numerical results of the model show that, in constantly accelerated intergace, bubble grows with constant velocity and the spike falls with gravitational acceleration at later times, while the velocity of the bubble in impulsively accelerated interface decay to zero asymp flow model for the bubble and spike for constantly accelerated interface and impulsively accelerated interface.

  • PDF

The Study of automatic region segmentation method for Non-rigid Object Tracking (Non-rigid Object의 추적을 위한 자동화 영역 추출에 관한 연구)

  • 김경수;정철곤;김중규
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.183-186
    • /
    • 2001
  • This paper for the method that automatically extracts moving object of the video image is presented. In order to extract moving object, it is that velocity vectors correspond to each frame of the video image. Using the estimated velocity vector, the position of the object are determined. the value of the coordination of the object is initialized to the seed, and in the image plane, the moving object is automatically segmented by the region growing method and tracked by the range of intensity and information about Position. As the result of an application in sequential images, it is available to extract a moving object.

  • PDF