DOI QR코드

DOI QR Code

Design of Navigation Filter for Underwater Glider

수중글라이더용 항법필터 설계

  • Received : 2020.10.03
  • Accepted : 2020.11.07
  • Published : 2022.12.31

Abstract

In this paper, we design a navigation filter for an underwater glider. Underwater gliders are low-cost, reusable, and can be used for a long time. Two types of filters are designed considering characteristics such as small size, low cost, and low power. The navigation filter estimates the reference velocity of the underwater glider's body frame based on the minimum sensor output. The sensor configuration of the first filter consists of an accelerometer, a magnetometer, and a depth sensor. the second filter include extra a gyroscope in the same configuration. The estimated velocity is fused with the attitude, converted into the velocity of the navigation frame and finally the position is estimated. To analyze the performance of the proposed filter, analysis was performed using Monte Carlo numerical analysis method, and the results were analyzed with standard deviation (1σ). Standard deviations of each filter's position error are 334.34m, 125.91m.

본 논문에서는 수중글라이더용 항법필터 설계를 수행한다. 해양의 염분, 수온 등 해양 정보 획득을 위해서 사용되는 수중글라이더는 저전력으로 장기간 운용이 되기 때문에, 다양한 센서를 적용하기에 많은 제약이 있다. 제한된 수중글라이더의 운용 특성을 고려하여 센서 구성이 다른 두 종류의 위치 추정을 위한 항법 필터를 설계한다. 항법필터는 최소한의 센서출력 정보를 바탕으로 수중글라이더의 동체좌표계 기준 속도를 추정한다. 첫 번째 필터의 센서 구성은 가속도계, 지자계, 심도계 센서로 구성 되어있고, 두 번째 필터는 첫 번째 필터와 동일한 구성에 자이로 센서가 추가된다. 추정된 속도는 자세정보와 융합하여 항법좌표계의 속도정보로 변환 뒤 최종적으로 위치를 추정한다. 제안된 필터의 성능을 분석하기 위해 단일 시뮬레이션 및 몬테카를로 수치해석 기법을 이용하여 분석을 수행하고 수행결과는 표준편차(standard deviation, 1σ)로 분석한다. 각 필터의 위치오차에 대한 표준편차는 334.34, 125.91m이다.

Keywords

Acknowledgement

This work was supported by Ministry of Science and ICT grant funded by the Korean government. (No. 1711155177)

References

  1. R. E. Davis, C. C. Eriksen, and C. P. Jones, "Autonomous Buoyancy-driven Underwater Gliders," in The Technology and Applications of Autonomous Underwater Vehicles, 1st ed. USA, CRC Press, 2002.
  2. J. G. Graver. "Underwater Gliders: Dynamics, Control and Design," Ph. D. dissertation, Princeton University, NJ, USA, 2005.
  3. J. Sun, J. Yu, A. Zhang, and F. Zhang, "Navigation Positioning Algorithm for Underwater Gliders in Three-Dimensional Space," in Proceedings of 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, pp. 1269-1274, 2015.
  4. Z. Duguid and R. Camilli, "Improving Resource Management for Unattended Observation of the Marginal Ice Zone Using Autonomous Underwater Gliders," Frontiers in Robotics and AI, Jan. 2021.
  5. I. M. Rodiana, U. Latifa, B. R. Trilaksono, E. Hidayat, and M. F. Sagala, "Software and Hardware in the Loop Simulation of Navigation System Design Based on State Observer Using Kalman Filter for Autonomous Underwater Glider," in Proceedings of IEEE 7th International Conference on Underwater System Technology: Theory and Applications, Kuala Lumpur, Malaysia, pp. 1-5, 2017.
  6. S. A. T. A. Azhima, M. I. Hadi, V. P. Priandiri, B. R. Trilaksono, and E. M. Hidayat, "Design and Simulation of Navigation System for Hybrid Autonomous Underwater Glider," in Proceedings of 2019 IEEE 9th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, pp. 189-194, 2019.
  7. P. Wang, P. K. Singh, and J. Yi, "Dynamic Model - Aided Localization of Underwater Autonomous Gliders," in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, pp. 5565-5570, 2013.
  8. J. Sun, F. Hu , W. Jin, J. Wang, X. Wang, Y. Luo, J. Yu, A. Zhang, "Model-Aided Localization and Navigation for Underwater Gliders Using Single-Beacon Travel-Time Differences," sensors, vol. 20, no. 3, article ID. 893, Feb. 2020.