• Title/Summary/Keyword: velocity fields

Search Result 1,087, Processing Time 0.024 seconds

Effects of Distribution of Axle Load and Inflation Pressure of Tires on Fuel Efficiency of Tractor Operations (차축의 중량 분포와 타이어의 공기압이 트랙터 작업의 연료 효율에 미치는 영향)

  • Lee, Jin-Woong;Kim, Kyeong-Uk;Gim, Dong-Hyeon;Choi, Kyu-Jeong
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.303-313
    • /
    • 2011
  • This study was conducted to investigate the effects of axle weight distribution and inflation pressure of tire on the fuel economy of tractors as well as operational range of tractor engine in terms of engine speed and power when a 4WD tractor of 38.2 kW rated power at 2500 rpm is used for plowing and flooded-field rotavating in paddy fields. (1) Plowing operation required an average engine power of 9.6~13.5 kW which equals 25~35% of rated PTO power. Engine speed ranged from 1,320.4 to 1,737.4 rpm, work velocity from 3.4 to 4.8 km/h, and fuel consumption from 3.2 to 4.2 L/h, respectively. (2) Flooded-field rotavating required an average engine power of 11.5~18.5 kW which equals 30~48.4% of rated PTO power. Out of this 6.2~12.2 kW was used for PTO power. Engine speed ranged from 1,557 to 2,067 rpm, work velocity from 2.5~5.4 km/h and fuel consumption from 3.2~5.5 L/h, respectively. (3) Axle weight distribution, inflation pressure of tire and moisture content of soil did not affect significantly the specific volumetric fuel consumption but affected significantly the fuel consumption per unit area of operation. Fuel savings amounted to 65% in plowing operation and 20% in flooded-field rotavating when the axle weight distribution and inflation pressure of tire were optimally adjusted. (4) Optimal adjustment of axle weight distribution and inflation pressure of tire are expected to save fuel consumption by 10~65% per unit area of operation in plowing and 10~20% in flooded-field rotavating.

A 6 m cube in an atmospheric boundary layer flow -Part 2. Computational solutions

  • Richards, P.J.;Quinn, A.D.;Parker, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.177-192
    • /
    • 2002
  • Computation solutions for the flow around a cube, which were generated as part of the Computational Wind Engineering 2000 Conference Competition, are compared with full-scale measurements. The three solutions shown all use the RANS approach to predict mean flow fields. The major differences appear to be related to the use of the standard $k-{\varepsilon}$, the MMK $k-{\varepsilon}$ and the RNG $k-{\varepsilon}$ turbulence models. The inlet conditions chosen by the three modellers illustrate one of the dilemmas faced in computational wind engineering. While all modeller matched the inlet velocity profile to the full-scale profile, only one of the modellers chose to match the full-scale turbulence data. This approach led to a boundary layer that was not in equilibrium. The approach taken by the other modeller was to specify lower inlet turbulent kinetic energy level, which are more consistent with the turbulence models chosen and lead to a homogeneous boundary layer. For the $0^{\circ}$ case, wind normal to one face of the cube, it is shown that the RNG solution is closest to the full-scale data. This result appears to be associated with the RNG solution showing the correct flow separation and reattachment on the roof. The other solutions show either excessive separation (MMK) or no separation at all (K-E). For the $45^{\circ}$ case the three solutions are fairly similar. None of them correctly predicting the high suctions along the windward edges of the roof. In general the velocity components are more accurately predicted than the pressures. However in all cases the turbulence levels are poorly matched, with all of the solutions failing to match the high turbulence levels measured around the edges of separated flows. Although all of the computational solutions have deficiencies, the variability of results is shown to be similar to that which has been obtained with a similar comparative wind tunnel study. This suggests that the computational solutions are only slightly less reliable than the wind tunnel.

An Experimental Study for the Performance Test of a Ballistic Range Simulator (Ballistic Range Simulator의 성능평가를 위한 실험적 연구)

  • Kang, Hyun-Goo;Rajesh, G.;Lee, Jung-Min;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.367-370
    • /
    • 2006
  • The ballistic range has long been employed in a variety of engineering fields such as high-velocity impact engineering, projectile aerodynamics, creation of new materials, etc, since it can create an extremely high-pressure state in very short time. Two-stage light gas gun is being employed most extensively. The present experimental study has been conducted to develop a new type of ballistic range which can easily perform a projectile simulation. The ballistic range consists of a high-pressure tube, piston, pump tube, shock tube and launch tube. The experiment is conducted to find out the dependence of various parameters on the projectile velocity. The pressure in high-pressure tube, pressure of diaphragm rupture and projectile mass are varied to obtain various projectile velocities. This study also addresses the effect of the presence of a shock tube located between the pump tube and launch tube on system study. The experimental results are compared with those obtained through an author's theoretical study.

  • PDF

An estimate of structure-borne sound by the excitation at an arbitrary point on the rectangular plate with fixed edges (주변고정 장방형 평판에 있어서 임의점 가진에 의한 고체전파음의 예측)

  • 김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.21-34
    • /
    • 1988
  • Machinery enclosures are widely adopted to reduce the noise emission in various fields of application. Emitted noise, which is due to the vibration of enclosure's outer surface, is composed of two kinds of sound with different path of propagation. One is the "structure-borne sound", while the other is "air-borne sound". In order to get a most efficient machinery enclouser a prudent consideration upon the above structure-borne and air-borne sound is required, as the guiding principle of contermeasure for each noise is quite different. The controlling of input vibration and its isolation are major subjects for the structure-borne sound, and the specifications of absorbing members and damping panels are the major related matters for the air-borne sound. Hence, it seems very efficient to separate the total sounds into two categories with a great accuracy when one think of further reduction of noise from the existing enclosure, although its separating methods have not been made clear for many years. Author proposes an application method of experimental modal analysis to extract the structure-borne sound from the measured total radiation sound, as the air-borne sound is deduced by the vectorial difference between the measured total radiation sound and the calculated structure-borne sound. In order to calculate the correct structure-borne sound by the excitation at an arbitrary point on the enclosure structure, it is important to decide 1) how to estimate the enclosure's surface vibration velocity and 2) how to compute the radiation sound which is considered as the effect of vibration modes of enclosure surface. The former can be solved with total frequency response function calculated by the application of experimental modal analysis. The latter is to be solved by the author's new approaches for radiation sound computation by means of the Rayleigh's integral equation and the boundary-element method applied complex surface vibration velocity. As a first step, structure-borne sound by the excitation at an arbitry point on the rectangular plate with fixed edges, has been calculated to verified the reliability of the developed computation methods. The results of calculation show good agreements with those of the actual measurements.actual measurements.

  • PDF

PIV Measurements of Flow Downstream of Polyurethane Heart Valve Prosthesis for Artificial Heart: Pulsatile Flow Experiment (PIV를 이용한 인공심장용 폴리우레탄 인공판막 하류의 유동 측정 : 맥동유동실험)

  • Yu, Jeong-Yeol;Kim, Jung-Gyeong;Seong, Jae-Yong;Jang, Jun-Geun;Min, Byeong-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.629-639
    • /
    • 2002
  • In-vitro flow characteristics downstream of a polyurethane artificial heart valve and a Bjork-Shiley Monostrut mechanical valve have been comparatively investigated in pulsatile flow using particle image velocimetry (PIV). With a triggering system and a time-delayed circuit the velocity distributions on the two perpendicular measurement planes downstream of the valves are evaluated at any given instant in conjunction with the opening behaviors of valve leaflets during a cardiac cycle. The regions of stasis and high shear stress can be found simultaneously by examining the entire view of the instantaneous velocity and Reynolds shear stress fields. It is known that high shear stress regions exist at the interface between strong axial jet flows along the wall and vortical flows in the central area distal to the valves. In addition. there are large stagnation or recirculation regions in the vicinity of the valve leaflet, where thrombus formation can be induced by accumulation of blood elements damaged in the high shear stress zones. A correlation between the unsteady flow patterns downstream of the valve and the corresponding opening postures of the polyurethane valve membrane gives useful data necessary for improved design of the frame structure and leaflet geometry of the polyurethane valve.

Visualization of Supersonic Projectile Flow in a Ballistic Range (Ballistic Range를 이용한 초음속 Projectile유동의 가시화)

  • Kang, Hyun-Goo;Shin, Choon-Sik;Choi, Jong-Youn;Lee, Jong-Sung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.263-266
    • /
    • 2007
  • The ballistic range has long been employed in a variety of engineering fields such as high-velocity impact engineering, projectile aerodynamics, creation of new materials since it can create an extremely high-pressure state in very short time. Two-stage light gas gun is being employed most extensively. The present experimental study has been conducted to develop a new type of ballistic range which can easily perform a projectile simulation. The experiment is conducted to find out the dependence of various parameters on the projectile velocity. The pressure in high-pressure tube, pressure of diaphragm rupture and projectile mass and piston mass are varied to obtain various projectile velocities. The flow field is visualized to see flow around projectile.

  • PDF

SEASONAL AND SUBINERTIAL VARIATIONS IN THE SOYA WARM CURRENT REVEALED BY HF OCEAN RADARS, COASTAL TIDE GAUGES, AND A BOTTOM-MOUNTED ADCP

  • Ebuchi, Naoto;Fukamachi, Yasushi;Ohshima, Kay I.;Wakatsuchi, Masaaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.340-343
    • /
    • 2008
  • The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. Seasonal and subinertial variations in the SWC are investigated using data obtained by high-frequency (HF) ocean radars, coastal tide gauges, and a bottom-mounted acoustic Doppler current profiler (ADCP). The HF radars clearly capture the seasonal variations in the surface current fields of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in the summer, and becomes weaker in the winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The almost same seasonal cycle was repeated in the period from August 2003 to March 2007. In addition to the annual variation, the SWC exhibits subinertial variations with a period from 10-15 days. The surface transport by the SWC shows a significant correlation with the sea level difference between the Sea of Japan and Sea of Okhotsk for both of the seasonal and subinertial variations, indicating that the SWC is driven by the sea level difference between the two seas. Generation mechanism of the subinertial variation is discussed using wind data from the European Centre for Medium-range Weather Forecasts (ECMWF) analyses. The subinertial variations in the SWC are significantly correlated with the meridional wind component over the region. The subinertial variations in the sea level difference and surface current delay from the meridional wind variations for one or two days. Continental shelf waves triggered by the meridional wind on the east coast of Sakhalin and west coast of Hokkaido are considered to be a possible generation mechanism for the subinertial variations in the SWC.

  • PDF

The Biomechanical Analysis of Ballet Arabesque by Using Elastic Band (탄성밴드 사용유무에 따른 발레 아라베스크 동작의 운동 역학적 분석)

  • Kim, Min-Jung;Yi, Kyung-Ock
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.265-274
    • /
    • 2015
  • Objective : The purpose of this study was to analyze the effect of the elastic band on ballet arabesque based on kinematics analysis. Methods : To observe the effect of the elastic band, the availability of the elastic band during movement was set as the independent variable, and the dependent variables were set by using factors from two different categories such as motor mechanics and kinematics variables. For motor mechanics variable, the muscle activity and the center of pressure(COP)'s trajectory and velocity were used. Furthermore, the physical angle was used for kinematic variables. Data samples from the experiment was used to understand the correlation between independent and dependent variables while using paired samples t-test as a data analysis tool. Results : After analyzing the result of experiment, the usage of the Elastic band on ballet arabesque movement seemed to increase the activity of the agonistic muscle, which is mainly used for movement, and to improve the stability of the supporting leg by decreasing the trajectory and velocity of the center of pressure(COP). Moreover, the elastic band increased the level of elevation of the stretching leg with reducing the angle of the hip joint that resulted into a more stable movement and furthermore providing more beauty while standing on it. Conclusion : The movement training program while the using elastic band are expected to lead to appropriate muscular development and reduce the muscle imbalance, which usually occurs to dancers, during training with unfamiliar specific movements or strengthening muscular strength for a specific movement. In addition, this work is expected to be used as a training reference to understand and learn the fundamentals of movements of ballet and other dance fields.

The Analysis of Kinematic Difference in Glide and Delivery Phase for the High School Male Shot Putter's Records classified by Year (남자 고등부 포환던지기 선수들의 연도 별 기록에 따른 글라이드와 딜리버리 국면의 운동학적 차이)

  • Park, Jae-Myoung;Chang, Jae-Kwan;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.295-306
    • /
    • 2013
  • The purpose of this study was to provide high school male shot putters training methods of gliding and delivery motion through comparative analysis of kinematic characteristics. To accomplish this purpose, three dimensional motion analysis was performed for the subjects(PKC, KKH, YDL) who participated in high school male shot putter competition on 92nd (2011), 93rd (2013) National Sports Festival. The subjects were filmed by four Sony HXR-MC2000 video cameras with 60 fields/s. The three-dimensional kinematic data of the glide, conversion and delivery phase were obtained by Kwon3d 3.1 version. The data of the shoulder rotational angles and projection angles were calculated with Matlab R2009a. The following conclusions had been made. With the analysis of the gliding and stance length ratio, the gliding length was shorter at the TG than the SG with short-long technique but the gliding and stance length ratio was 46.8:53.2% respectively. The deviation of the shots trajectory from APSS(Athlete-plus-shot-system) revealed that the PKC showed similar to "n-a-b-c-I" of skilled S-shape type, KKH and YDL showed "n-a-d-f-I'" of unskilled type. Furthermore, they showed smaller radial distance from the central axis of the APSS and the shots were away from the linear trajectory. From this characteristics, The PKC who performed more TG than SG had shorter glide with S-shape of APSS(skilled type) showed the better record than others with technical skill. But KKH and YDL had bigger glide ratio with "n-a-d-f-I'" of unskilled type and improved their records with technical factor. The projection factor had an effect on the record directly. Because PKC maintained more lower glide and transition posture with momentum transfer through COG's rapid horizontal velocity respectively the subject possessed the characteristics of high horizontal and vertical velocity with large turning radius from shot putter to APSS.

TRAO Key Science Program: mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale (TIMES)

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Choi, Yunhee;Lee, Seokho;Baek, Giseon;Lee, Yong-Hee;Choi, Minho;Kang, Hyunwoo;Tatematsu, Ken'ichi;Gaches, Brandt A.L.;Heyer, Mark H.;Evans, Neal J. II;Offner, Stella S.R.;Yang, Yao-Lun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.66.1-66.1
    • /
    • 2018
  • Turbulence is a phenomenon which largely determines the density and velocity fields in molecular clouds. Turbulence can produce density fluctuation which triggers a gravitational collapse, and it can also produce a non-thermal pressure against gravity. Therefore, turbulence controls the mode and tempo of star formation. However, despite many years of study, the properties of turbulence remain poorly understood. As part of the Taeduk Radio Astronomy Observatory (TRAO) Key Science Program (KSP), "apping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale (TIMES; PI: Jeong-Eun Lee)", we have mapped two star-forming clouds, the Orion A and the ${\rho}$ Ophiuchus molecular clouds, in 3 sets of lines (13CO 1-0/C18O 1-0, HCN 1-0/HCO+ 1-0, and CS 2-1/N2H+ 1-0) using the TRAO 14-m telescope. We aim to map entire clouds with a high-velocity resolution (~0.05 km/s) to compare turbulent properties between two different star-forming environments. We will present the preliminary results using a statistical method, Principal Component Analysis (PCA), that is a useful tool to represent turbulent power spectrum.

  • PDF