DOI QR코드

DOI QR Code

PIV Measurements of Flow Downstream of Polyurethane Heart Valve Prosthesis for Artificial Heart: Pulsatile Flow Experiment

PIV를 이용한 인공심장용 폴리우레탄 인공판막 하류의 유동 측정 : 맥동유동실험

  • 유정열 (서울대학교 기계항공공학부) ;
  • 김중경 ((주)바이오메드랩) ;
  • 성재용 ((주)LG전자) ;
  • 장준근 (서울대학교 전기컴퓨터공학부) ;
  • 민병구 (서울대학교 의과대학 의공학교실, 서울대학교 의학연구원 의용생체공학연구소)
  • Published : 2002.05.01

Abstract

In-vitro flow characteristics downstream of a polyurethane artificial heart valve and a Bjork-Shiley Monostrut mechanical valve have been comparatively investigated in pulsatile flow using particle image velocimetry (PIV). With a triggering system and a time-delayed circuit the velocity distributions on the two perpendicular measurement planes downstream of the valves are evaluated at any given instant in conjunction with the opening behaviors of valve leaflets during a cardiac cycle. The regions of stasis and high shear stress can be found simultaneously by examining the entire view of the instantaneous velocity and Reynolds shear stress fields. It is known that high shear stress regions exist at the interface between strong axial jet flows along the wall and vortical flows in the central area distal to the valves. In addition. there are large stagnation or recirculation regions in the vicinity of the valve leaflet, where thrombus formation can be induced by accumulation of blood elements damaged in the high shear stress zones. A correlation between the unsteady flow patterns downstream of the valve and the corresponding opening postures of the polyurethane valve membrane gives useful data necessary for improved design of the frame structure and leaflet geometry of the polyurethane valve.

Keywords

References

  1. Wagner, W. R., Johnson, P. C., Kormos, R. L. and Griffith, B. P., 1993, 'Evaluation of Bioprosthetic Valve-associated Thrombus in Ventricular Assist Device Patients,' Circulation, Vol. 88, 5 Part 1, pp. 2023-2029 https://doi.org/10.1161/01.CIR.88.5.2023
  2. Yoganathan, A. P., Corcoran, W. H., Harrison, E. C. and Carl, J. R., 1978, 'The Bjork-Shiley Aortic Prosthesis: Flow Characteristics, Thrombus Formation and Tissue Overgrowth,' Circulation, Vol. 58, No. 1, pp. 70-76 https://doi.org/10.1161/01.CIR.58.1.70
  3. Ellis, J. T., Healy, T. M., Fontaine, A. A., Saxena, R. and Yoganathan, A. P., 1996, 'Velocity Measurements and Flow Patterns Within the Hinge Region of a Medtronic $Parallel^{TM}$ Bileaflet Mechanical Valve with Clear Housing,' J. Heart Valve Disease, Vol. 5, No. 6, pp. 591-599
  4. Healy, T. M., Fontaine, A. A., Ellis, J. T., Walton, S. P. and Yoganathan, A. P., 1998, 'Visualization of the Hinge Flow in a 5:1 Scaled Model of the Medtronic Parallel Bileaflet Heart Valve Prosthesis,' Exp. in Fluids, Vol. 25, No. 5-6, pp. 512-518 https://doi.org/10.1007/s003480050257
  5. Sutera, S. P., 1977, 'Flow-induced Trauma to Blood Cells,' Circ. Res., Vol. 41, No. 1, pp. 2-8 https://doi.org/10.1161/01.RES.41.1.2
  6. Stein, P. D. and Sabbah, H. N., 1974, 'Measured Turbulence and Its Effect on Thrombus Formation,' Circ. Res., Vol. 35, No. 4, pp. 608-614 https://doi.org/10.1161/01.RES.35.4.608
  7. Bluestein, D., Gutierrez, C., Londono, M. and Schoephoerster, R. T., 1999, 'Vortex Shedding in Steady Flow Through a Model of an Arterial Stenosis and Its Relevance to Mural Platelet Deposition,' Ann. Biomed. Eng., Vol. 27, No. 6, pp. 763-773 https://doi.org/10.1114/1.230
  8. Lim, W. L., Chew, Y. T., Chew, T. C. and Low, H. T., 1998, 'Steady Flow Dynamics of Prosthetic Aortic Heart Valves: A Comparative Evaluation with PIV Techniques,' J. Biomech., Vol. 31, No. 5, pp. 411-421 https://doi.org/10.1016/S0021-9290(98)00026-8
  9. Browne, P., Ramuzat, A., Saxena, R. and Yoganathan, A. P., 2000, 'Experimental Investigation of the Steady Flow Downstream of the St. Jude Bileaflet Heart Valve: A Comparison between Laser Doppler Velocimetry and Particle Image Velocimetry Techniques,' Ann. Biomed. Eng., Vol. 28, No. 1, pp. 39-47 https://doi.org/10.1114/1.252
  10. Affeld, K., Walker, P. and Schichl, K., 1989, 'The Use of Image Processing in the Investigation of Artificial Heart Valve Flow,' ASAIO Trans., Vol. 35, No. 3, pp. 294-298 https://doi.org/10.1097/00002480-198907000-00038
  11. Brucker, C., 1997, 'Dual-camera DPIV for Flow Studies past Artificial Heart Valves,' Exp. in Fluids, Vol. 22, No. 6, pp. 496-506 https://doi.org/10.1007/s003480050077
  12. 김중경, 성재용, 장준근, 유정열, 민병구, 1999, 'PIV를 이용한 인공심장용 폴리우레탄 인공판막 하류의 유동 측정: 정상유동실험,' 대한기계학회논문집B, 제23권, 제12호, pp. 1570-1581
  13. Suh, S. W., Kim, W. G., Kim, H. C. and Min, B. G. 1996, 'A New Polymer Valve for Mechanical Circulatory Support Systems,' Int. J. Artif. Organs, Vol. 19, No. 12, pp. 712-718
  14. Baldwin, J. T., Deutsch, S., Geselowitz, D. B. and Tarbell, J. M., 1990, 'Estimation of Reynolds Stresses Within the Penn State Left Ventricular Assist Device,' ASAIO Trans., Vol. 36, No. 3, pp. M274-M278
  15. Giersiepen, M., Krause, U., Knott, E., Reul, H. and Rau, G., 1989, 'Velocity and Shear Stress Distribution Downstream of Mechanical Heart Valves in Pulsatile Flow,' Int. J. Artif. Organs, Vol. 12, No. 4, pp. 261-269
  16. Biophys. J. v.12 no.3 Red Blood Cell Damage by Shear Stress Leverett, L. B.;Hellums, J. D.;Alfrey, C. P.;Lynch, E. C. https://doi.org/10.1016/S0006-3495(72)86085-5
  17. Leverett, L. B., Hellums, J. D., Alfrey, C. P. and Lynch, E. C., 1972, 'Red Blood Cell Damage by Shear Stress,' Biophys. J., Vol. 12, No. 3, pp. 257-273 https://doi.org/10.1016/S0006-3495(72)86085-5
  18. Sutera, S. P. and Mehrjardi, M. H., 1975, 'Deformation and Fragmentation of Human Red Blood Cells in Turbulent Shear Flow,' Biophys. J., Vol. 15, No. 1, pp. 1-10 https://doi.org/10.1016/S0006-3495(75)85787-0
  19. Mohandas, N., Hochmuth, R. M. and Spaeth, E. E., 1974, 'Adhesion of Red Cells to Foreign Surfaces in the Presence of Flow,' J. Biomed. Mater. Res., Vol. 8, No. 2, pp. 119-136 https://doi.org/10.1002/jbm.820080203
  20. Grigioni, M., Daniele, C., D'Avenio, G. and Barbaro, V., 1999, 'A Discussion on the Threshold Limit for Hemolysis Related to Reynolds Shear Stress,' J. Biomech., Vol. 32, No. 10, pp. 1107-1112 https://doi.org/10.1016/S0021-9290(99)00063-9
  21. Tiederman, W. G., Privette, R. M. and Phillips, W. M., 1988, 'Cycle-to-cycle Variation Effects on Turbulent Shear Stress Measurements in Pulsatile Flows,' Exp. in Fluids, Vol. 6, No. 4, pp. 265-272 https://doi.org/10.1007/BF00187366
  22. Walburn, F. J., Sabbah, H. N. and Stein, P. D., 1983 'An Experimental Evaluation of the Use of an Ensemble Average for the Calculation of Turbulence in Pulsatile Flow,' Ann. Biomed. Eng., Vol. 11, No. 5, pp. 385-399 https://doi.org/10.1007/BF02584215
  23. Baldwin, J. T., Deutsch, S., Petrie, H. L. and Tarbell, J. M., 1993, 'Determination of Principal Reynolds Stresses in Pulsatile Flows after Elliptical Filtering of Discrete Velocity Measurements,' J. Biomech. Eng., Vol. 115, No. 4A, pp. 396-403 https://doi.org/10.1115/1.2895503