• Title/Summary/Keyword: velocity fields

Search Result 1,087, Processing Time 0.024 seconds

The Effect of Slits and Swirl Vanes on the Development of Turbulent Flow Fields in Gun-Type Gas Burner (Gun식 가스버너의 난류유동장 발달에 미치는 슬릿과 스월베인의 영향)

  • Kim, Jang-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1299-1308
    • /
    • 2003
  • This paper is studied to investigate the effect of slits and swirl vanes on the development of turbulent flow fields in gun-type gas burner with a cone type baffle plate because this gas burner is generally composed of eight slits and swirl vanes. All of turbulent characteristics including mean velocities were measured in the horizontal plane and cross section by using X-type hot-wire probe from hot-wire anemometer system. This experiment is carried out at flow rate 450 l/min in the test section of subsonic wind tunnel. Slits cause the fast jets, and then they have the characteristic that the flow is not adequately spread to radial direction and has long flow length and very small flow velocity distribution in the central part. On the contrary, swirl vanes does not have long enough for adequate flow length to downstream because the rotational flow diffuses remarkably to radial direction. However, the suitable arrangement between slits and swirl vanes causes effective flow width and flow length, and then it promotes fast flow mixing over the entire region including central part to increase turbulence more largely and effectively. Therefore, it is thought as a very desirable design method in gun-type gas burner to locate slits on the outside of swirl vanes.

Study of Screened Supersonic Jet Flow Fields (스크린 설치에 따른 초음속 제트유동 변화에 관한 연구)

  • Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.92-98
    • /
    • 2005
  • Screen can provide any disturbed resistance that affects the change in characteristics of turbulence, velocity and pressure distributions of the flow field, and thus it has been widely used to control the flow. Some previous related studies for compressible flows have limitations such as, considering relatively low-Mach-number flows in the range of 0.3 ∼ 0.7, and not observing the detailed shock structures of the flow fields. An experimental study on highly compressible axi-symmetric supersonic jet flow fields behind wire-gauze screen has thus been carried out. Continuous/instantaneous flow images by Schlieren flow- visualization technique and the information of Pitot pressure/flow-noise measurements of the flow field behind the screen for various jet expansion conditions have been obtained. Effects of various porosity and inclination angles of the screen at the nozzle exit have also been investigated, and the experimental results have been compared to the case with no screen installed.

Experimental Study on the Aerodynamic Characteristics of the Ducted fan for the Propulsion of a Small UAV (소형 무인항공기 추진용 덕티드팬의 공력특성에 대한 실험적 연구)

  • Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.413-422
    • /
    • 2012
  • The ducted fan for a small UAV propulsion can reconnoiter and observe in a town and a small area, it has better thrust efficiency and a long endurance than propeller. Thrust characteristics of hover and for ward flight condition for the ducted fan UAV is important issue to improve a endurance. The unsteady 3-dimensional flow fields of the ducted fan UAV is essential to stable flight. In this paper, to verify the design results of the ducted fan and to investigate a stable aeronautical characteristic, the thrust performance and the unsteady 3-dimensional flow fields are measured. Thrust characteristics for the hovering and the forward flight conditions are measured by the 6-components balance system in the subsonic wind tunnel. The unsteady 3-dimensional flow fields are analyzed by using a stationary $45^{\circ}$ slanted hot-wire technique. The swirl velocity is almost removed behind the stator blades. Therefore, the thrust performance of the ducted fan is improved and the flight stability is maintained.

Wind Field Change Simulation before and after the Regional Development of the Eunpyeong Area at Seoul Using a CFD_NIMR_SNU Model (CFD_NIMR_SNU 모형을 활용한 은평구 건설 전후의 바람환경 변화 모사 연구)

  • Cho, Kyoungmi;Koo, Hae-Jung;Kim, Kyu Rang;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.539-555
    • /
    • 2011
  • Newly constructed, high-rise dense building areas by urban development can cause changes in local wind fields. Wind fields were analyzed to assess the impact on the local meteorology due to the land use changes during the urban redevelopment called "Eunpyeong new town" in north-western Seoul using CFD_NIMR_SNU (Computational Fluid Dynamics, National Institute of Meteorological Research, Seoul National University) model. Initial value of wind speed and direction use analysis value of AWS (Automatic Weather Station) data during 5 years. In the case of the pre-construction with low rise built-up area, it was simulated that the spatial distribution of horizontal wind fields depends on the topography and wind direction of initial inflow. But, in the case of the post-construction with high rise built-up area, it was analyzed that the wind field was affected by high rise buildings as well as terrain. High-rise buildings can generate new circulations among buildings. In addition, small size vortexes were newly generated by terrain and high rise buildings after the construction. As high-rise buildings act as a barrier, we found that the horizontal wind flow was separated and wind speed was reduced behind the buildings. CFD_NIMR_SNU was able to analyze the impact of high-rise buildings during the urban development. With the support of high power computing, it will be more common to utilize sophisticated numerical analysis models such as CFD_NIMR_SNU in evaluating the impact of urban development on wind flow or channel.

PIV Measurements of Rudder Inflow Induced by Propeller Revolution in Hull Wake (선체반류 중에서 작동하는 프로펠러에 의한 방향타 유입유동 PIV 계측)

  • Paik, Bu-Geun;Kim, Ki-Sup;Kim, Kyung-Youl;Kim, Gun-Do;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.128-133
    • /
    • 2011
  • In the present study, the flow fields in between the propeller and the semi-spade rudder are investigated by using PIV technique to find out the influences of both simulated hull wake and propeller wake on the incident flow to the rudder. The velocity fields are measured at the propeller rotation angle of $180^{\circ}$ and the rudder deflection angles of $0^{\circ}$. Flow fields measured at each rudder deflection angle are analyzed in terms of angle-of-attack against the rudder leading edge. The hull wake increases the angle-of-attack more than that in the uniform inflow condition, forming the angle-of-attack of about $20^{\circ}$ at 0.7R(R=propeller radius) position. The distribution of the angle-of-attack is strongly affected by the stagnation point around the leading edge and camber effect of the rudder. These effects provide asymmetric distribution of angle-of-attack with respect to the leading edge of the rudder.

Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load

  • Esen, Ismail;Alazwari, Mashhour A.;Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.805-826
    • /
    • 2022
  • The free and live load-forced vibration behaviour of porous functionally graded (PFG) higher order nanobeams in the thermal and magnetic fields is investigated comprehensively through this work in the framework of nonlocal strain gradient theory (NLSGT). The porosity effects on the dynamic behaviour of FG nanobeams is investigated using four different porosity distribution models. These models are exploited; uniform, symmetrical, condensed upward, and condensed downward distributions. The material characteristics gradation in the thickness direction is estimated using the power-law. The magnetic field effect is incorporated using Maxwell's equations. The third order shear deformation beam theory is adopted to incorporate the shear deformation effect. The Hamilton principle is adopted to derive the coupled thermomagnetic dynamic equations of motion of the whole system and the associated boundary conditions. Navier method is used to derive the analytical solution of the governing equations. The developed methodology is verified and compared with the available results in the literature and good agreement is observed. Parametric studies are conducted to show effects of porosity parameter; porosity distribution, temperature rise, magnetic field intensity, material gradation index, non-classical parameters, and the applied moving load velocity on the vibration behavior of nanobeams. It has been showed that all the analyzed conditions have significant effects on the dynamic behavior of the nanobeams. Additionally, it has been observed that the negative effects of moving load, porosity and thermal load on the nanobeam dynamics can be reduced by the effect of the force induced from the directed magnetic field or can be kept within certain desired design limits by controlling the intensity of the magnetic field.

Large Eddy simulation using P2P1 finite element formulation (P2P1 유한요소를 이용한 LES)

  • Choi, Hyoung-Gwon;Nam, Young-Sok;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.386-391
    • /
    • 2001
  • A finite element code based on P2P1 tetra element has been developed for the large eddy simulation (LES) of turbulent flows around a complex geometry. Fractional 4-step algorithm is employed to obtain time accurate solution since it is less expensive than the integrated formulation, in which the velocity and pressure fields are solved at the same time. Crank-Nicolson method is used for second order temporal discretization and Galerkin method is adopted for spatial discretization. For very high Reynolds number flows, which would require a formidable number of nodes to resolve the flow field, SUPG (Streamline Upwind Petrov-Galerkin) method is applied to the quadratic interpolation function for velocity variables, Noting that the calculation of intrinsic time scale is very complicated when using SUPG for quadratic tetra element of velocity variables, the present study uses a unique intrinsic time scale proposed by Codina et al. since it makes the present three-dimensional unstructured code much simpler in terms of implementing SUPG. In order to see the effect of numerical diffusion caused by using an upwind scheme (SUPG), those obtained from P2P1 Galerkin method and P2P1 Petrov-Galerkin approach are compared for the flow around a sphere at some Reynolds number. Smagorinsky model is adopted as subgrid scale models in the context of P2P1 finite element method. As a benchmark problem for code validation, turbulent flows around a sphere and a MIRA model have been studied at various Reynolds numbers.

  • PDF

Effect of Stent Design Porosity on Hemodynamics Within Cerebral Aneurysm Model: Numerical Analysis (스텐트 공극률의 뇌동맥류 모델 내부 유동장 영향 수치해석)

  • Phan, Dai Thanh;Lee, Sang-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • In the present study, CFD simulations were conducted for investigating intra-aneurysmal flow characteristics with different stent porosities ($C_{\alpha}$ = 80%, 74%, and 64%), and the simulation results were compared with experimental data. Using a quadratic tetrahedral element-based finite element scheme, we estimated velocity fields and wall shear stress. The intra-aneurysmal velocity reduction ratios obtained via simulation agree well with published experimental data. It was found that a stent with a porosity of 80%, which is highest in the present study, is able to effectively reduce flow into the aneurysm, which causes intra-aneurysmal stasis, and that stents with lower porosities afford only incremental benefits in reducing inflow to an aneurysm.

The Structure of Three-dimensional Turbulent Flow Fields of a Cone Type Gas Swirl Burner (콘형 가스 스월버너의 3차원 난류 유동장 구조)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.22-29
    • /
    • 2001
  • This paper represents axial mean velocity, turbulent kinetic energy and swirl number based on momentum flux measured in the X-Y plane and Y-Z plane respectively of a cone type gas swirl burner by using X-probe from the hot-wire anemometer system. This experiment is carried out at flow rates 350 and $450{\ell}/min$ respectively, which are equivalent to the combustion air flow rate necessary for heat release 15,000 kcal/hr in gas furnace, in the test section of a subsonic wind tunnel. Axial mean velocities and turbulent kinetic energies show that their maximum values exist centering around narrow slits situated radially on the edge of and in the forefront of a burner until $X/R{\fallingdotseq}1.5$, but they have a peculiar shape like a starfish diffusing and developing into inward and outward of a burner by means of the mixing between flows ejected from narrow slits, an inclination baffle plate and swirl vanes respectively according to downstream regions. Moreover, they show a relatively large value in the inner region of 0.5$S_m$ obtained by integration of velocity profiles shows a characteristic that has an inflection point composing of the maximum and minimum value until X/R<3, but shows close agreement with the geometric swirl number after a distance of X/R=3.

  • PDF

Nonlinear Interaction among Wave, Current and Submerged Breakwater (파랑-흐름-잠제의 비선형 상호간섭 해석)

  • Park, Su-Ho;Lee, Jung-Hoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1037-1048
    • /
    • 2016
  • In this study, nonlinear wave interaction in the presence of a uniform current is studied using numerical model, named CADMAS-SURF which is based on the Navier-Stokes equations coupled with Volume of Fluid for tracking free surface deformation. The original CADMAS-SURF developed for interaction of wave with structure is modified/extended to simulate nonlinear fluid dynamic motions within wave-current coexisting field. The capability of Numerical Wave-Current Tank (NWCT) in this study is validated by comparing with available existing laboratory experiments for both wave-following and wave-opposing current. The numerical results for interaction between wave and current are shown to be in good agreement with experimental data. Then, this study focused on the dynamic motions of the water velocity, surface elevation and vorticity within combined wave-current field in demonstrating complex nonlinear physical phenomena due to interaction between wave and current. In addition, NWCT is applied to simulate a more complex wave-current-structure field for wave propagating over a submerged breakwater associated with current. Detailed discussion including characteristics of velocity and vorticity fields and the relation between free surface and vorticity are given.