• 제목/요약/키워드: velocity differential

검색결과 429건 처리시간 0.033초

Response of rotational parameter in the stagnation point with motile microorganism: Unsteady nanofluid

  • Mohamed A. Khadimallah;Imene Harbaoui;Sofiene Helaili;Abdelhakim Benslimane ;Humaira Sharif ;Muzamal Hussain;Muhammad Nawaz Naeem;Mohamed R. Ali;Aqib Majeed;Abdelouahed Tounsi
    • Advances in concrete construction
    • /
    • 제15권4호
    • /
    • pp.241-249
    • /
    • 2023
  • The unsteady mixed convection Casson type MHD nanofluid flow in the stagnation point with motile microorganism around a spinning sphere is investigated. Time dependent flow dynamics is considered. Similarity transformations have been employed to transfer the governing partial differential structure into ordinary differential structure. The impact of distinct parameters is examined via tables and graphs. The impact of rotational parameter (spin) on profiles of velocity profiles, temperature and concentration is revealed for unsteady mixed convection Casson type MHD nanofluid flow. It is observed that it is clear that rotational parameter has a great effect on non-dimensional primary velocity component but rotational parameter has a slight impact on non-dimensional secondary velocity component. The validity of the current investigation is authorized through comparing the existing outcomes with previous published literature.

차량동역학 해석 프로그램 AutoDyn7의 동력전달장치 모델 (Development of Powertrain Model for Vehicle Dynamic Analysis Program, AutoDyn7)

  • 손정현;유완석;김두현
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.185-191
    • /
    • 2001
  • In many papers, the powertrain system generally has been madeled as one-dimensional torque model. One-dimensional powertrain model may calculate the torque correctly but it does not consider the non-rotational degrees-of-freedom of the powertrain components and the interaction of these degrees-of-freedom with the vehicle body frame and suspension. To consider the non-rotational degrees of freedom, the differential is modeled as a three-dimensional rigid body in this paper. A constant velocity joint is newly formulated and a relative constraint is also formulated to model the motion transfer due to gear ratio of the differential. Implementing the proposed powertrain system in the multibody model, more detail dynamic responses can be obtained. Obtained outputs such as reaction torques on the constant velocity joint and reaction forces on the rack can be useful data in the design of a powertrain.

  • PDF

복합방진벽에 의한 Rayleigh파의 차단 (Screening of Rayleigh Waves by Composite Barriers)

  • 이종세
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.133-140
    • /
    • 1997
  • Based on the Green's function technique, an analytical approach is developed to examine the surface wave screening effectiveness of composite wave barriers. The composite barrier consists of a high velocity layer sandwiched between two thin layers of low shear velocity materials. The high velocity layer is represented by differential matrix operators which relate the wave fields on each side of the layer. The low velocity layers are modeled by non-rigid contact conditions which allow partial sliding at the interfaces. Screening ratio of barriers with various combination of material, geometric, and non-rigidness parameters are compared and discussed in some detail.

  • PDF

Full Scale Testing of the Effect of Stairwell Pressurization on Pressure Differential and Flow Velocity

  • Son, Bong-Sae;Park, Kyung-Hwan;Chang, Young-Bae
    • 한국방재학회 논문집
    • /
    • 제11권3호
    • /
    • pp.83-89
    • /
    • 2011
  • 계단실을 직접 가압했을 경우에 계단실과 부속실 사이의 차압 및 부속실과 세대 사이의 차압이 어떤 영향을 받는지 연구하기 위해 실건물을 사용해 실험했다. 또한 열린문에서의 유속분포도 측정하였다. 본 연구에 사용된 건물은 지상 20층 지하 2층의 공동주택이다. 계단실을 가압하기 위해서 송풍기를 지하 1층에 설치하여 외부공기를 계단실로 공급했다. 13가지 경우에 대한 실험을 실시했으면 주 실험변수들은 문이 개방된 층의 숫자와 위치 및 송풍량이었다. 지상 1층 문들만이 열린 상태에서는 계단실과 부속실 사이의 차압 및 부속실과 세대 사이의 차압이, 1층 부근을 제외하고는, 비교적 균일하게 분포되었다. 실험결과 180~270 CMM에서 한 층이 개방되어도 화재안전기준의 방연풍속을 만족하였고, 계단실은 전체적으로 양압을 유지할 수 있었으나 최소차압 조건(10 Pa)을 항상 만족시키지는 못하였다. 두 층의 문들이 개방된 경우, 유량을 증가함으로써 최소유속조건은 만족시킬 수 있었으나 가압지점 인근에서 과압이 발생하지 않는 상태에서 최소차압조건을 만족시키는 것은 비현실적임을 발견했다.

선형변이 차동변압기를 이용한 왕복운동 계측기법 (An Alternating Motion Technique Using Linear Variable Differential Transformers)

  • 최주호;김윤겸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.1073-1077
    • /
    • 1996
  • This paper presents a recoil and counter recoil(R&CR) motion measurement method using linear variable differential transformers(LVDT). The output of a LVDT is obtained from the differential voltage of the 2nd transformers. As a sensor core is attached at the motion body, the output is directly proportional to the core motion. Displacement, velocity and acceleration are measure from the core length. With a comparison between the measurement result and the known value which is obtained by the precision steel tape, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

평균속도 개념을 적용한 상태공간에서의 과도응답해석 (A Transient Response Analysis in the State-space Applying the Average Velocity Concept)

  • 김병옥;김영철;김영춘;이안성
    • 한국소음진동공학회논문집
    • /
    • 제14권5호
    • /
    • pp.424-431
    • /
    • 2004
  • An implicit direct-time integration method for obtaining transient responses of general dynamic systems is described. The conventional Newmark method cannot be directly applied to state-space first-order differential equations, which contain no explicit acceleration terms. The method proposed here is the state-space Newmark method that incorporates the average velocity concept, and can be applied to an analysis of general dynamic systems that are expressed by state-space first-order differential equations. It is also readily coded into a program. Stability and accuracy analyses indicate that the method is numerically unconditionally stable like the conventional Newmark method, and has a period error of 2nd-order accuracy for small damping and 4th-order for large damping and an amplitude error of 2nd-order, regardless of damping. In addition, its utility and validity are confirmed by two application examples. The results suggest that the proposed state-space Newmark method based on average velocity be generally applied to the analysis of transient responses of general dynamic systems with a high degree of reliability with respect to stability and accuracy.

평균속도 개념을 적용한 상태공간에서의 과도동적응답 해석 (A Transient Dynamic Response Analysis in the State-Space Applying the Average Velocity)

  • 이안성;김병옥;김영철;김영춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.465-470
    • /
    • 2003
  • In this study, the state-space Newmark method based on average velocity is presented to analyse the transient dynamic response for general dynamic system. The conventional Newmark method based on average acceleration cannot he directly to the first-order state-space differential equations introducing the state-space vector. To overcome this problem, the time-step integration algorithm, based on average velocity concept, suitable for the first-order state-space differential equations is proposed In results, the proposed method has %he numerical stability and order of accuracy, which is proved analytically, equal to those of the conventional Newmark method based on average acceleration. Also, the formulation for numerical solution is very simple and the calculation time Is nearly equal to that of the conventional Newmark method based on average acceleration in spite of an increase of two times over matrix size. This method will be look forward to applying the general dynamic system to calculate the transient dynamic response.

  • PDF

SOLUTION OF THE BOUNDARY LAYER EQUATION FOR A MAGNETOHYDRODYNAMIC FLOW OF A PERFECTLY CONDUCTING FLUID

  • ZAKARIA, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제6권2호
    • /
    • pp.63-73
    • /
    • 2002
  • The influence of unsteady boundary layer magnetohydrodynamic flow with thermal relaxation of perfectly conducting fluid, past a semi-infinite plate, is considered. The governing non linear partial differential equations are solved using the method of successive approximations. This method is used to obtain the solution for the unsteady boundary layer magnetohydrodynamic flow in the special form when the free stream velocity exponentially depends on time. The effects of Alfven velocity $\alpha$ on the velocity is discussed, and illustrated graphically for the problem.

  • PDF

미소운동 변환을 이용한 자율주행 자전거의 기구학 모델 (Kinematic Modeling for Autonomous Bicycle Using Differential Motion Transformation)

  • 이수영
    • 로봇학회논문지
    • /
    • 제8권4호
    • /
    • pp.292-297
    • /
    • 2013
  • This paper presents a new method of kinematic modeling for autonomous bicycle by using the differential motion transformation. Kinematic model is indispensable to trajectory planning and control for an autonomous mobile robot. The conventional methods of kinematic modeling for an autonomous bicycle depend on intuition by geometry. On the contrary, the proposed method in this paper is based on the systematic differential motion transformation, thus applicable to various types of autonomous bicycles. The differential motion transformation gives Jacobian between two coordinate frames and the velocity kinematics as a result.

이동로봇의 바퀴 속도 제한을 고려한 최대 속도궤적 생성 방법 (Maximum Velocity Trajectory Planning for Mobile Robots Considering Wheel Velocity Limit)

  • 양길진;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.471-476
    • /
    • 2015
  • This paper presents a maximum velocity trajectory planning algorithm for differential mobile robots with wheel velocity constraint to cope with physical limits in the joint space for two-wheeled mobile robots (TMR). In previous research, the convolution operator was able to generate a central velocity that deals with the physical constraints of a mobile robot while considering the heading angles along a smooth curve in terms of time-dependent parameter. However, the velocity could not track the predefined path. An algorithm is proposed to compensate an error that occurs between the actual and driven distance by the velocity of the center of a TMR within a sampling time. The velocity commands in Cartesian space are also converted to actuator commands to drive two wheels. In the case that the actuator commands exceed the maximum velocity the trajectory is redeveloped with the compensated center velocity. The new center velocity is obtained according to the curvature of the path to provide a maximum allowable velocity meaning a time-optimal trajectory. The effectiveness of the algorithm is shown through numerical examples.