• Title/Summary/Keyword: vehicular communications

Search Result 148, Processing Time 0.023 seconds

A Study on the Characteristics of Recognition Regarding Automotive Head Up Display (자동차 HUD 표시장치의 인식특성에 관한 연구)

  • Kim, Byeong-Woo;Cho, Hyun-Duck;Lee, Young-Suk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • The Paper presents some potential new uses for Head-Up Displays (HUDs) in vehicular applications, where the information conveyed to the driver goes well beyond the content of today's production HUDs. Such information potentially related to the use of cellular telephones, navigation systems, vehicle to roadside communications systems, and many others. Improvements in flat panel display technologies are enabling the presentation of larger, more reconfigurable, more daylight-viewable HUD images. In addition, A Formal test and evaluation is proposed to ensure that new information displays support the driver tasks. The above developments suggest increased future opportunities for HUDs to present useful information in an as-needed, eyes-on-the-road manner.

  • PDF

A study on ECQV applied the butterfly key expansion algorithm (Butterfly key expansion 알고리즘을 적용한 ECQV에 관한 연구)

  • Sun, Seol-hee;Kim, Eun-gi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.762-764
    • /
    • 2016
  • The ECQV(Elliptic Curve Qu-Vanstone) is a implicit certificate scheme based on ECC(Elliptic Curve Cryptography). Implicit certificates are smaller and faster than a traditional explicit certificate. Therefore, it can be used in a memory or bandwidth constraint communication environments. Also, the butterfly key expansion algorithm is a method to issue many certificates by using only one public key. In this study, by applying the butterfly key expansion algorithm to ECQV, we suggest a new useful issuing certificate method that can be used in vehicular communication environments.

  • PDF

Performance Evaluation of IEEE 802.11p Based WAVE Communication Systems at MAC Layer (MAC 계층에서의 IEEE 802.11p 기반 WAVE 통신 시스템의 성능 평가)

  • Choi, Kwang Joo;Kim, Jin Kwan;Park, Sang Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.526-531
    • /
    • 2014
  • Vehicular communications have been receiving much attention in intelligent transport systems(ITS) by combining communication technology with automobile industries. In general, vehicular communication can be used for vehicle-to-vehicle(V2V) and vehicle-to-infrastructure( V2I) communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environment(WAVE). WAVE system transmits signal in 5.835~5.925 GHz frequency band with orthogonal frequency division multiplexing(OFDM) signaling. In this paper, after 32 bit processed the channel monitoring in MAC(Media Access Control) layer of WAVE system implemented according to IEEE 802.11p standard, data were received and we evaluated the performance, we built the test bed consisting of OBU(On Board Unit) in the real expressway. We transmitted WSM(WAVE Short Message) and received WSM between OBU wirelessly. And then, we calculated channel occupancy time per one frame and throughput, and evaluated the performance.

An Adaptable Destination-Based Dissemination Algorithm Using a Publish/Subscribe Model in Vehicular Networks

  • Morales, Mildred Madai Caballeros;Haw, Rim;Cho, Eung-Jun;Hong, Choong-Seon;Lee, Sung-Won
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.227-242
    • /
    • 2012
  • Vehicular Ad Hoc Networks (VANETs) are highly dynamic and unstable due to the heterogeneous nature of the communications, intermittent links, high mobility and constant changes in network topology. Currently, some of the most important challenges of VANETs are the scalability problem, congestion, unnecessary duplication of data, low delivery rate, communication delay and temporary fragmentation. Many recent studies have focused on a hybrid mechanism to disseminate information implementing the store and forward technique in sparse vehicular networks, as well as clustering techniques to avoid the scalability problem in dense vehicular networks. However, the selection of intermediate nodes in the store and forward technique, the stability of the clusters and the unnecessary duplication of data remain as central challenges. Therefore, we propose an adaptable destination-based dissemination algorithm (DBDA) using the publish/subscribe model. DBDA considers the destination of the vehicles as an important parameter to form the clusters and select the intermediate nodes, contrary to other proposed solutions. Additionally, DBDA implements a publish/subscribe model. This model provides a context-aware service to select the intermediate nodes according to the importance of the message, destination, current location and speed of the vehicles; as a result, it avoids delay, congestion, unnecessary duplications and low delivery rate.

An Efficient Routing Algorithm for Solving the Lost Link Problem of Vehicular Ad-hoc Networks (차량 애드혹 네트워크의 링크 단절 문제 해결을 위한 효율적인 라우팅 알고리즘)

  • Lim, Wan-Seon;Kim, Sok-Hyong;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1075-1082
    • /
    • 2008
  • A greedy forwarding algorithm is one of the most suitable solutions for routing in vehicular ad-hoc networks. Compared to conventional routing protocols for mobile ad-hoc networks, greedy forwarding based routing protocols maintain only local information of neighbors instead of per-destination routing entries, and thus they show better performance in highly-mobile vehicular ad-hoc networks. With greedy forwarding, each node learns its geographical position and periodically broadcasts a beacon message including its position information. Based on the position information, each node selects a neighbor node located closest to the destination node as the next forwarder. One of the most serious problems in greedy forwarding is the lost link problem due to the mobility of nodes. In this paper, we propose a new algorithm to reduce the lost link problem. The proposed algorithm aims to find an efficient and stable routing path by taking account of the position of neighbors and the last beacon reception time. Our simulation results show that the proposed algorithm outperforms the legacy greedy algorithm and its variants.

Topology-Based Flow-Oriented Adaptive Network Coding-Aware Routing Scheme for VANETs

  • Iqbal, Muhammad Azhar;Dai, Bin;Islam, Muhammad Arshad;Aleem, Muhammad;Vo, Nguyen-Son
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2044-2062
    • /
    • 2018
  • Information theory progression along with the advancements being made in the field of Vehicular Ad hoc NETworks (VANETs) supports the use of coding-aware opportunistic routing for efficient data forwarding. In this work, we propose and investigate an adaptive coding-aware routing scheme in a specific VANET scenario known as a vehicular platoon. Availability of coding opportunities may vary with time and therefore, the accurate identification of available coding opportunities at a specific time is a quite challenging task in the highly dynamic scenario of VANETs. In the proposed approach, while estimating the topology of the network at any time instance, a forwarding vehicle contemplates the composition of multiple unicast data flows to encode the correct data packets that can be decoded successfully at destinations. The results obtained by using OMNeT++ simulator reveal that higher throughput can be achieved with minimum possible packet transmissions through the proposed adaptive coding-aware routing approach. In addition, the proposed adaptive scheme outperforms static transmissions of the encoded packets in terms of coding gain, transmission percentage, and encoded packet transmission. To the best of our knowledge, the use of coding-aware opportunistic routing has not been exploited extensively in available literature with reference to its implications in VANETs.

Smart Camera Technology to Support High Speed Video Processing in Vehicular Network (차량 네트워크에서 고속 영상처리 기반 스마트 카메라 기술)

  • Son, Sanghyun;Kim, Taewook;Jeon, Yongsu;Baek, Yunju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.152-164
    • /
    • 2015
  • A rapid development of semiconductors, sensors and mobile network technologies has enable that the embedded device includes high sensitivity sensors, wireless communication modules and a video processing module for vehicular environment, and many researchers have been actively studying the smart car technology combined on the high performance embedded devices. The vehicle is increased as the development of society, and the risk of accidents is increasing gradually. Thus, the advanced driver assistance system providing the vehicular status and the surrounding environment of the vehicle to the driver using various sensor data is actively studied. In this paper, we design and implement the smart vehicular camera device providing the V2X communication and gathering environment information. And we studied the method to create the metadata from a received video data and sensor data using video analysis algorithm. In addition, we invent S-ROI, D-ROI methods that set a region of interest in a video frame to improve calculation performance. We performed the performance evaluation for two ROI methods. As the result, we confirmed the video processing speed that S-ROI is 3.0 times and D-ROI is 4.8 times better than a full frame analysis.

Fading Effects and Antenna Diversity Tests of WAVE Communications (WAVE 통신의 페이딩 효과와 안테나 다이버시티 실험)

  • Choi, Hyun-Kyun;Oh, Hyun-Seo;Cho, Woong;Jang, Youn-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.967-973
    • /
    • 2014
  • WAVE (Wireless Access in Vehicular Environments) communications is the core technology for C-ITS (Cooperative-Intelligent Transportation System) which communicates with the road infrastructure and other vehicles to exchange traffic information and service while driving. In this paper, to analyze the performance degradation according to the distance between WAVE communication terminals, we derived the formulas for the locations of down-fade and up-fade points by using the two-ray ground reflection model, and verified these theoretical results by comparing with those of RSSI (Receiver Signal Strength Indicator) measurements. In addition, to solve the problem of down-fade, we suggested the WAVE communication with the antenna diversity and experimentally confirmed the performance improvement in the highway LOS (Line Of Sight) environments.

An Analysis for the Efficient Dissemination of Beacon Messages in Vehicle-to-Vehicle (V2V) Communications (자동차 간 통신에서 비컨 메시지의 효율적인 방송을 위한 성능 분석)

  • Nguyen, Hoa-Hung;Bhawiyuga, Adhitya;Jeong, Han-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.483-491
    • /
    • 2012
  • In vehicle-to-vehicle (V2V) communications, each vehicle should periodically disseminate a beacon message including the kinematics information, such as position, speed, steering, etc., so that a neighbor vehicle can better perceive and predict the movement of the vehicle. However, a simple broadcasting of such messages may lead to a low reception probability as well as an excessive delay. In this paper, we attempt to analyze the impact of the following key parameters of the beacon dissemination on the performance of vehicular networks: beacon period, carrier-sensing range, and contention window (CW) size. We first derive a beacon period which is inversely proportional to the vehicle speed. Next, we mathematically formulate the maximum beacon load to demonstrate the necessity of the transmit power control. We finally present an approximate closed-form solution of the optimal CW size that leads to the maximum throughput of beacon messages in vehicular networks.

차량통신 네트워크를 위한 MAC 기술

  • Lee, Sang-U;O, Hyeon-Seo;Gwak, Dong-Yong;Park, Jong-Hyeon
    • Information and Communications Magazine
    • /
    • v.26 no.4
    • /
    • pp.55-60
    • /
    • 2009
  • 차량통신 네트워크는 운전자 및 동승자, 더 나아가 보행자에게 안전 서비스 및 다양한 멀티미디어 서비스를 제공할 수 있다는 점에서 미래의 ITS(Intelligent Transportation System)를 주도할 핵심적 기술로 기대되고 있다. 본 고에서는 최근 연구가 활발히 진행되고 있는 차량통신 네트워크의 개념과 특징을 살펴보고 대표적인 차량통신 표준인 WAVE(Wireless Access in Vehicular Environments) 기술의 개요와 MAC(Medium Access Control) 기술에 대해 살펴본다.