• Title/Summary/Keyword: vehicle radar

Search Result 244, Processing Time 0.023 seconds

The Study on Vehicle Radar Technology Trends (차량 레이더 기술 동향 연구)

  • Bae, C.H.
    • Electronics and Telecommunications Trends
    • /
    • v.21 no.4 s.100
    • /
    • pp.142-151
    • /
    • 2006
  • ITU-R은 권고 M.1310에서 교통정보 및 제어 시스템(TICS)과 관련된 여러 가지 항목을 권고하고 있다. TICS는 지상 교통 시스템의 안전과 효율성 및 관리방법을 향상시키기 위해 컴퓨터, 통신, 위치정보 그리고 차량기술이 집약된 시스템으로 TICS 중 차량의 직접적인 주행과 관련된 차량 제어 시스템(AVCS)은 충돌 방지를 위해 요구되는 몇가지 사항을 포함하고 있으며 그 가운데 차량 레이더는 운전자의 보조를 통한 안전한 차량 운행을 위해 적용 가능한 기술 중의 하나이다. 본 논문에서는 차량 레이더의 국제표준화 동향, 제외국의 차량 레이더 법규 동향 및 개발동향에 대하여 살펴볼 것이다.

The Design of a Direct Driving Gimbal System Using the DSP(TMS320F240) Controller and the Gyroscope (DSP제어기, 자이로센서를 이용한 GIMBAL시스템 설계)

  • 류정오;최중경;최승진;안기호;박성수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.139-142
    • /
    • 2001
  • This paper presents a design of two gimbal system. One is two axes stabilized platform that is targeted to preserve direction while vehicle that is adhered antiaircraft fire, radar or EOTS is moving. The system maintains stabilization by recovering error using the rate gyro. The other is three axes gimbal system that is intended to simulate various angle movement in space and to test three axes gyroscope. This system determines gyro condition comparing gyro output value with converted motor encoder value.

  • PDF

DEVELOPMENT OF ROBUST LATERAL COLLISION RISK ASSESSMENT METHOD (측후방 충돌 안전 시스템을 위한 횡방향 충돌 위험 평가 지수 개발)

  • Kim, Kyuwon;Kim, Beomjun;Kim, Dongwook;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.44-49
    • /
    • 2013
  • This paper presents a lateral collision risk index between an ego vehicle and a rear-side vehicle. The lateral collision risk is designed to represent a lateral collision risk and provide the appropriate threshold value of activation of the lateral collision management system such as the Blind Spot Detection(BSD). The lateral collision risk index is designed using the Time to Line Crossing(TLC) and the longitudinal collision index at the predicted TLC. TLC and the longitudinal collision index are calculated with the signals from the exterior sensor such as the radar equipped on the rear-side of a vehicle and a vision sensor which detects the distance and time to the lane departure. For the robust situation assessment, the perception of driving environment determining whether the road is straighten or curved should be determined. The relative motion estimation method has been proposed with the road information via the integrated estimator using the environment sensors and vehicle sensor. A lateral collision risk index was composed with the estimated relative motion considering the relative yaw angle. The performance of the proposed lateral collision risk index is investigated via computer simulations conducted using the vehicle dynamics software CARSIM and Matlab/Simulink.

Coordinates Tracking Algorithm Design (표적 좌표지향 알고리즘 설계)

  • 박주광
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.62-76
    • /
    • 2002
  • This paper describes the design of a Coordinates Tracking algorithm for EOTS and its error analysis. EOTS stabilizes the image sensors such as FLIR, CCD TV camera, LRF/LD, and so on, tracks targets automatically, and provides navigation capability for vehicles. The Coordinates Tracking algorithm calculates the azimuth and the elevation angle of EOTS using the inertial navigation system and the attitude sensors of the vehicle, so that LOS designates the target coordinates which is generated by a Radar or an operator. In the error analysis in this paper, the unexpected behaviors of EOTS that is due to the time delay and deadbeat of the digital signals of the vehicle equipments are anticipated and the countermeasures are suggested. This algorithm is verified and the error analysis is confirmed through simulations. The application of this algorithm to EOTS will improve the operational capability by reducing the time which is required to find the target and support especially the flight in a night time flight and the poor weather condition.

Radar Vehicle Detector for the Raplacement of the Conventional Loop Detector (기존의 루프감지기와 호환성 있는 레이더 차량감지기)

  • Jeong, Key;Jeong, Jae-Kwon;Kim, Ihn-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.8
    • /
    • pp.1346-1354
    • /
    • 2000
  • 본 논문에서는 기존의 루프감지기와 호환성이 있는 레이더 기술을 이용한 차량감지기를 개발하였다. 24 ㎓의 FMCW 고도계와 도플러 속도계 기술을 이용하여 도로상의 차량 길이와 속도정보를 알아낼 수 있는 비매설형의 차량감지기이다. 신호처리에는 DAQ 보드를 사용하였고, 응용소프트웨어인 LabView로 프로그래밍 하였다. 기존의 루프 감지기와 연결된 교통정보 네트웍과의 호환성을 위해 RS-232C 표준인터페이스를 이용하여 VDS(Vehicle Detector System)로 차량데이터를 전송하였다. 속도와 차량길이 정보의 정확도에 있어서 기존 루프감지기보다 약 10% 정도 향상되었음이 측정되었다.

  • PDF

A Novel Timing Control Method for Airborne SAR Motion Compensation (항공기 요동보상을 위한 SAR시스템의 타이밍 제어 기법)

  • Lee, Hyon-Ik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.453-460
    • /
    • 2010
  • For high quality image acquisition, compensating air-vehicle motion is essential for airborne SAR system. This paper describes a timing control based motion compensation method for airborne SAR system. Efficient timing control is critical for SAR system since it maintains many timing signals and timing setting for the signals should be updated frequently. This paper proposes Timing Cluster method as an efficient means for timing control of SAR system. Moreover, this paper suggests a simple and efficient method to compensate air-vehicle motion based on the Timing Cluster method. Timing Cluster method enables SAR system to control the timing in a timing noncritical way just maintaining little amount of information.

A Study on Safety Evaluation Method of LKAS in Actual Road (LKAS의 실도로 안전성 평가방법에 관한 연구)

  • Yoon, PilHwan;Lee, SeonBong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.33-39
    • /
    • 2018
  • Recently, the automobile industry has developed ADAS (Advanced Driver Assistance System) to prevent traffic accidents and reduce driver's driving burden. Among the ADAS, the LKAS (Lane Keeping Assistance System) is a support system for the convenience and safety of the driver, and the main function is to maintain the driving lane of the vehicle. LKAS is a system that uses radar sensor and camera sensor to collect information about the position of the vehicle in the lane and to support keeping the lane through control if necessary. In many countries, LKAS has already been commercialized and the convenience and safety of drivers have been improved. The international LKAS evaluation test procedure is being developed and discussed by standardization committees such as the ISO (International Organization for Standardization) and the Euro NCAP (New Car Assessment Program). In Korean, the LKAS test method is specified in the KNCAP (Korean New Car Assessment Program), but the evaluation method is not defined. Therefore, the LKAS test procedure that meets international standards and is suitable for domestic road environment is necessary. In this paper, development of LKAS test evaluation scenarios that meets international standards and considering domestic road environment, and the formula that can evaluate the result value after control as the relative distance of lane and the front wheel are suggested. And a comparative analysis was conducted to verify the validity of the suggested scenario and formula. The test evaluation was conducted using the vehicle equipped with the LKAS.

A Study of the Design for the Korean Wheeled Armored Command Post Vehicle Using AHP (AHP 기법을 이용한 한국형 차륜형 지휘소차량 디자인에 관한 연구)

  • Kim, Gunkook;Kim, Seokhwan;Lee, Jeongyeob;Kim, Jeongwoo;Choi, Insuk;Lee, Jaewoo;Kim, Uiwhan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.717-725
    • /
    • 2017
  • Traditionally, a design has been applied on a various defense area for the improvement of the mobility, reducing the radar detection area and other reasons. In case of Korean Wheeled Armored Vehicle(WAV), a design has been also applied for retaining the agility and threatening feature in the battlefield. However some figures has been changed because of constraints such as assembling and manufacturing in the development stage. Today, the government has planned to develop the Wheeled Armored Command Post Vehicle(CPV), a variant of WAV, and it is necessary to apply the latest design trend, which is suitable for the concept of the CPV, on it.

Development of an Intelligent Cruise Control using Path Planning based on a Geographic Information System (지리정보시스템 기반 경로계획을 이용한 지능형순항제어시스템 개발)

  • Lim, Kyung-Il;Oh, Jae-Saek;Lee, Je-Uk;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • Autonomous driving is no longer atechnology of the future since the development of autonomous vehicles has now been realized, and many technologies have already been developed for the convenience of drivers. For example, autonomous vehicles are one of the most important drive assistant systems. Among these many drive assistant systems, Cruise Control Systems are now a typical technology. This system constantly maintains a vehicle's speed and distance from a vehicle in front by using Radar or LiDAR sensors in real time. Cruise Control Systems do not only serve their original role, but also fulfill another role as a 'Driving Safety' measure as they can detect a situation that a driver did not predict and can intervene by assuming a vehicle's longitude control. However, these systems have the limitation of only focusing on driver safety. Therefore, in this paper, an Intelligent Cruise Control System that utilizes the path planning method and GIS is proposed to overcome some existing limitations.

A Path Planning to Maximize Survivability for Unmanned Aerial Vehicle by using $A^*PS$-PGA ($A^*PS$-PGA를 이용한 무인 항공기 생존성 극대화 경로계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.24-34
    • /
    • 2011
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for human. UA V s are currently employed in many military missions such as reconnaissance, surveillance, enemy radar jamming, decoying, suppression of enemy air defense (SEAD), fixed and moving target attack, and air-to-air combat. UAVs also are employed in a number of civilian applications such as monitoring ozone depletion, inclement weather, traffic congestion, and taking images of dangerous territory. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$-PGA (A-star with Post Smoothing-Parallel Genetic Algorithm) for an UAV's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and TSP (Traveling Salesman Problem). A path planning algorithm for UAV is applied by transforming MRPP into SPP (Shortest Path Problem).