• Title/Summary/Keyword: vehicle motion control

Search Result 449, Processing Time 0.032 seconds

Vehicle Orientation Estimation by Using Magnetometer and Inertial Sensors (3축 자기장 센서 및 관성센서를 이용한 차량 방위각 추정 방법)

  • Hwang, Yoonjin;Choi, Seibum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.408-415
    • /
    • 2016
  • The vehicle attitude and sideslip is critical information to control the vehicle to prevent from unintended motion. Many of estimation strategy use bicycle model or IMU integration, but both of them have limits on application. The main purpose of this paper is development of vehicle orientation estimator which is robust to various vehicle state and road shape. The suggested estimator use 3-axis magnetometer, yaw rate sensor and lateral acceleration sensor to estimate three Euler angles of vehicle. The estimator is composed of two individual observers: First, comparing the known magnetic field and gravity with measured value, the TRIAD algorithm calculates optimal rotational matrix when vehicle is in static or quasi-static condition. Next, merging 3-axis magnetometer with inertial sensors, the extended Kalman filter is used to estimate vehicle orientation under dynamic condition. A validation through simulation tools, Carsim and Simulink, is performed and the results show the feasibility of the suggested estimation method.

Simulation Based Design of Intelligent Surveillance Robot for Mobility (모바일화를 위한 지능형 경계로봇의 시뮬레이션기반 설계)

  • Hwang, Ki-Sang;Kim, Do-Hyun;Park, Kyu-Jin;Park, Sung-Ho;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.340-346
    • /
    • 2008
  • An unmanned surveillance robot consists of a machine gun, a laser receiver, a thermal imager, a color CCD camera, and a laser illuminator. It has two axis control systems for elevation and azimuth. Because the current robot system is mounded at a fixed post to take care of surveillance tasks, it is necessary to modify such a surveillance robot to be installed on an UGV (Unmanned Ground Vehicle) system in order to watch blind areas. Thus, it is required to have a stabilization system to compensate the disturbance from the UGV. In this paper, a simulation based design scheme has been adopted to develop a mobile surveillance robot. The 3D CAD geometry model has first been produced by using Pro-Engineer. The required pan and tilt motor capacities have been analyzed using ADAMS inverse dynamics analysis. A target tracking and stabilization control algorithm of the mobile surveillance robot has been developed in order to compensate the motion of the vehicle which will experience the rough terrain. To test the performance of the stabilization control system of the robot, ADAMS/simulink co-simulations has been carried out.

Hydraulic System Design and Vehicle Dynamic Modeling for the Development of a Tire Roller

  • Kim, Sang-Gyum;Kim, Jung-Ha;Lee, Woon-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.484-494
    • /
    • 2003
  • In this paper, we describe a hydraulic system design and vehicle dynamic modeling for development of tire roller traction, an essential aspect in the system analysis of tire rollers. Generally, tire rollers are one of the most useful types of machines employed in road construction, technically applied to many construction fields. We also conceptualize a new hydraulic and driving system as well as define the motion equations for dynamic and hydraulic analysis. First, we design the hydraulic circuit of the steering control and driving machine system, which can be employed to advance the performance of the lateral control, creating a prototype of construction equipment. Second, we formulate the hydraulic steering system model and hydraulic driving system model through tire roller system development technology. Finally, we validate the acquired performance results in actual tire roller equipment using the data acquisition system. These results may perhaps facilitate the establishment of priorities and design strategies for incremental introduction of tire roller technology into the vehicle and construction field.

Performance Evaluation of Vehicle Gear-shifting Supportive Device Utilizing MR Haptic Cue (MR 햅틱 큐를 이용한 차량 기어변속 보조장치의 성능평가)

  • Han, Young-Min;Min, Chul-Gi
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.160-166
    • /
    • 2013
  • This paper proposes a driver supportive device with haptic cue function which can be applicable for vehicles adopting manual transmission system to transmit gear-shifting information to a driver by kinesthetic forces. This haptic cue function is implemented on accelerator pedal by utilizing magnetorheological(MR) fluid and clutch mechanism. In order to achieve this goal, an MR clutch mechanism is devised to be capable of rotary motion of accelerator pedal. The proposed MR clutch is then optimally designed and manufactured under consideration of spatial limitation of vehicles. After transmission torque is experimentally evaluated according to field intensity. The manufactured MR clutch is integrated with accelerator pedal and electric motor to establish the haptic cue device. Control performances are experimentally evaluated via a simple feed-forward control algorithm.

A Leveling Algorithm for Strapdown Inertial Navigation System Using Extended Kalman Filter (화장칼만필터를 이용한 스티랩다운 관성항법시스템의 수평축 정렬 알고리즘)

  • Hong, Hyun-Su;Park, Chan-Gook;Han, Hyung-Seok;Lee, Jang-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1231-1239
    • /
    • 2001
  • This paper presents a new leveling algorithm that estimates the initial horizontal angles composed of roll angle and pitch angle for a moving or stationary vehicle. The system model of the EKF is designed by linearizing the nonlinear Euler angle differential equation. The measurement models are designed for the moving case and for the stationary case, respectively. The simulation results show that the leveling algorithm is ade-quate not only for acquiring the initial horizontal angles of the vehicle in the motion with acceleration and rotation but also for the stationary one.

  • PDF

A Study on the Tracking Antenna System for Satellite Communication Using Embedded Controller

  • Kim, Jong-Kwon;Cho, Kyeum-Rae;Lee, Dae-Woo;Jang, Cheol-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.413-416
    • /
    • 2004
  • The tracking antenna system must be always pointed to a satellite for data link among moving vehicles. Especially, for an antenna mounted on a moving vehicle, it needs the stabilized the antenna system. So, software and hardware, signal processing of motion detection sensors, real-time processing of vehicle dynamics, trajectory estimation of satellite, antenna servo mechanism, and tracking algorithm, are unified in the antenna system. The purpose of this paper is to design the embedded tracking antenna control system for satellite communication. The embedded OS(Operating System) based stabilization and tracking algorithm was implemented. The performance of the designed embedded control system was verified by the real satellite communication test.

  • PDF

First Principle Approach to Modeling of Primitive Quad Rotor

  • Sudiyanto, Tata;Muljowidodo, Muljowidodo;Budiyono, Agus
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.148-160
    • /
    • 2009
  • By the development of recent technology, a new variant of rotorcrafts having four rotors start drawing attention from aerial-robotics engineers more than before. Its potential spans from just being control device test bed to performing difficult task such as carrying surveillance device to unreachable places. In this regards, modeling a quad-rotor is significant in analyzing its dynamic behavior and in synthesizing control system for such a vehicle. This paper summarizes the modeling of a mini quad-rotor aerial vehicle. A first principle approach is considered for deriving the model based on Euler-Newton equations of motion. The result of the modeling is a simulation platform that is expected to acceptably predict the dynamic behavior of the quad-rotor in various flight conditions. Linear models associated with different flight condition can be extracted for the purpose of control synthesis.

Vibration Control Performance of a Passenger Vehicle Featuring ER Engine Mounts (ER 엔진마운트를 장착한 승용차량의 진동제어 성능)

  • Song, Hyun-Jeong;Choi, Seung-Bok;Jeon, Young-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.481-486
    • /
    • 2000
  • This paper presents vibration control performance of a passenger vehicle installed with olectro-rheological(ER) engine mounts. As a first step, a mixed-mode ER engine mount is modeled and manufactured. After verifying the controllability of the dynamic stiffness by the intensity of the electric field, ER engine mounts are incorporated with a full-car model. The governing equation of motion is then formulated by considering engine excitation force. A skyhook controller to attenuate vibration motions is designed. The controller is implemented through hardware-in-the-loop simulation and control responses are presented in the both frequency and time domains.

  • PDF

A Semi-Active Suspension Using ER Fluids for a Commercial Vehicle Seat (ER 유체를 이용한 상용차 운전석의 반능동형 현가 장치)

  • 최정환;남무호;최승복;정재천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.394-399
    • /
    • 1997
  • This paper presents a new concept of a semi-active suspension system for a commercial vehicle seat. The proposed suspension system features an ER(electro-rheological) damper which can produce continuously tunable damping forces by control electric fields. A dynamic model of the ER damper is first achieved by incorporating Bingham property of the ER fluid, followed by the formulation of governing equations of motion for the suspension system. A sliding mode controller is then designed on the basis of the hyper-plane sliding mode scheme. The effectiveness of the proposed control system is evaluated by investigating control performance for vibration isolation.

  • PDF

A Study on Steering Control of Autonomous Underwater Vehicle Using Self-Recurrent Wavelet Neural Network (자기 회귀 웨이블릿 신경 회로망을 이용한 자율 수중 운동체의 방향제어에 관한 연구)

  • Kim, Byung-Soo;Park, Sang-Su;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1578-1579
    • /
    • 2007
  • In this paper, we propose a new method for designing the steering controller of Autonomous Underwater Vehicle(AUV) using a Self-Recurrent Wavelet Neural Network(SRWNN). The proposed control method is based on a direct adaptive control technique, and a SRWNN is used for the controller of horizontal motion of AUV. A SRWNN is tuned to minimize errors between the SRWNN outputs and the outputs of AUV via the gradient descent(GD) method. Finally, through the computer simulations, we compare the performance of the propose controller with that of the MLP based controller to verify the superiority and effectiveness of the propose controller.

  • PDF