• Title/Summary/Keyword: vehicle modelling

Search Result 112, Processing Time 0.026 seconds

Characteristic Analysis of BLDC Motor for Vehicle Compressor Based on High Voltage (고전압 기반의 자동차 압축기용 BLDC 모터의 특성 해석)

  • Kim, Byeong-Woo;Cho, Hyun-Dock;Lee, Do-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.44-51
    • /
    • 2008
  • The performance design and analysis of an electric motor for vehicles is very complicated due to the variety of parameters. This paper presents the design of the BLDC motor for electric air compressor in high voltage(42V) system and compares with the characteristics of IPM, SPM type BLDC motor. Futher, optimal design for the electric motor has been carried out using Equivalent Magnetic Circuit and FEM Modelling. By analyzing the design results, it is found that design parameters for BLDC motor provided an useful tool for vehicles motor design.

Train/Track/Bridge Interaction Analysis Using 2-Dimensional Articulated High-Speed Train Model (2차원 관절형 고속열차 모델을 이용한 차량/궤도/교량 상호작용해석)

  • 김만철;양신추;이종득
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.414-421
    • /
    • 1999
  • In this paper, the simplified method for 2-dimensional train/track/bridge interaction analysis is utilized in the analysis of dynamic behavior of bridges in which the eccentricity of axle loads and the effect of the toriosnal forces acting on the bridge are included for the more accurate train/track/bridge interaction analysis. Inverstigations mainly into the influence of vehicle speed on train/track/bridge interactions are carried out for the two cases. The first case is that only train and bridge are considered in the modelling and the other case is that train, track and bridge are considered.

  • PDF

Vibrational Analysis of Slab Tracks Considering Wheel-Rail Interaction (차륜-레인 상호작용을 고려한 슬래브 궤도의 진동해석)

  • 이희현
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.77-87
    • /
    • 1994
  • Vibrational analysis of slab tracks for HSR(High Speed Rail) is performed in order to find dynamic characteristics and to control noise and vibration for the tracks. Wheel-rail interactive force is included in the analysis by modelling the vehicle and track as an unsprung mass and elastically-supported-double-beam respectively, and both are assumed to be connected by the Hertzian spring. From this study, it has been found that vibration in the track and the force transmitted to the infrastructure could be reduced by controlling elasticity, mass and stiffness of the track supporting system appropriately.

  • PDF

A Study on the Modeling of Hydrodynamic Coefficient for the Emergency Maneuver Simulation of Underwater Vehicle (수중함의 긴급기동 해석을 위한 유체력계수 모델링에 관한 연구)

  • Shin, Yong-Ku;Lee, Seung-Keon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.601-607
    • /
    • 2005
  • This paper describes a hydrodynamic modelling study based on the Feldman's equation to predict the nonlinear and coupled maneuvering characteristics of high speed submarine. The hydrodynamic coefficients set is obtained from the modeling of the cross flow drag force and sail induced vorticity, and the captive model experiments(VPMM and RA test) results used to improved the accuracy. The results contained in this paper will be helpful to predict the behavior of tight turn maneuver and to improve the SOE(Safety Operational Envelope) analysis in case of emergency maneuver.

Behavior Control Algorithm for Space Search Based on Swarm Robots (군집 로봇 기반 공간 탐색을 위한 행동 제어 알고리즘)

  • Tak, Myung-Hwan;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2152-2156
    • /
    • 2011
  • In this paper, we propose the novel behavior control algorithm by using the efficient searching method based on the characteristic of the swarm robots in unknown space. The proposed method consists of identifying the position and moving state of a robot by the dynamic modelling of a wheel drive vehicle, and planing behavior control rules of the swarm robots based on the sensor range zone. The cooperative search for unknown space is carried out by the proposed behavior control. Finally, some experiments show the effectiveness and the feasibility of the proposed method.

A Development of Thermal Radiation Plume Modelling for Heat Transfer to KSLV-II Engine Base (한국형 발사체 기저부 열전달 해석을 위한 플룸 복사 모델링 개념 개발)

  • Kim, Seong-Lyong;Ko, Ju-Yong;Kim, In-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.507-514
    • /
    • 2012
  • In the present research, NASA LRB plume radiation models are reconstructed with Thermal Desktop software, where the radiation to vehicle base environment can be calculated. The calculation shows the similar radiation heat compared to NASA prediction. Based on LRB plume radiation model, a KSLV-II thermal radiation model is proposed.

  • PDF

A Study on the Analysis of Pressure Characteristics of Hydraulic Modulator for Anti-Lock Brake System (미끄럼 방지 제동장치용 유압모듈레이터의 압력 특성 해석에 관한 연구)

  • Song, Chang-Seop;Yang, Hae-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.120-127
    • /
    • 1996
  • Anti-lock Brake System has been developed to reduce tendency for wheel lock and improve vehicle control during sudden braking on slippery road surfaces. This is achieved by controlling the braking pressure, avoiding wheel lock, while retaining handling and brake performance. This paper is concerned about pressurecharacteristics of hydraulic modulator. Experimental sets which is consists of hydraulic modulator, duty controller, pressure regulator, pressure senset is consuructed. System modelling and computer simulation are performed for comparison with experimental results. Brake wheel pressure are measured under various driving pulse. The result of experiment show fairly agreement with the simulation. As a result, it is known that wheel pressure is affected by duty ratio, orifice diameter through computer simulation.

  • PDF

Algorithm of Flying Control System for Level Flight using Min-Design Method on UAV (민(MIN) 설계 방법을 이용한 무인기 수평이동제어 알고리즘에 관한 연구)

  • Wang, Hyun-Min;Huh, Kyung-Moo;Woo, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.59-65
    • /
    • 2009
  • Recently, UAV(unmanned aerial vehicle) has evolved into various figure and become miniaturized. On using existing design method, it is hard to make modelling and standardizing design of flight control system of the figure including cylinder like pipe. These problems are caused by uncorrect express of nonlinearity in controller design. Therefore, it is developed through step of correct modelling and simulation on real time sing high efficiency computer in aircraft development of various figure. This is reducing period and expense of aircraft development. For the shake of solving these problems, in-design method has been devised by H.M. Wang. In this paper, an object of control is cylindrical UAV instead of the general figure of aircraft. It was analyzed flight condition, specification about level flight of the UAV and was presented algorithm to find control value.

Use of finite and infinite elements in static analysis of pavement

  • Patil, V.A.;Sawant, V.A.;Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • In recent years, study of the static response of pavements to moving vehicle and aircraft loads has received significant attention because of its relevance to the design of pavements and airport runways. The static response of beams resting on an elastic foundation and subjected to moving loads was studied by several researchers in the past. However, most of these studies were limited to steady-state analytical solutions for infinitely long beams resting on Winkler-type elastic foundations. Although the modelling of subgrade as a continuum is more accurate, such an approach can hardly be incorporated in analysis due to its complexity. In contrast, the two-parameter foundation model provides a better way for simulating the underlying soil medium and is conceptually more appealing than the one-parameter (Winkler) foundation model. The finite element method is one of the most suitable mathematical tools for analysing rigid pavements under moving loads. This paper presents an improved solution algorithm based on the finite element method for the static analysis of rigid pavements under moving vehicular or aircraft loads. The concrete pavement is discretized by finite and infinite beam elements, with the latter for modelling the infinity boundary conditions. The underlying soil medium is modelled by the Pasternak model allowing the shear interaction to exist between the spring elements. This can be accomplished by connecting the spring elements to a layer of incompressible vertical elements that can deform in transverse shear only. The deformations and forces maintaining equilibrium in the shear layer are considered by assuming the shear layer to be isotropic. A parametric study is conducted to investigate the effect of the position of moving loads on the response of pavement.

An Analysis of Choice Behavior for Tour Type of Commercial Vehicle using Decision Tree (의사결정나무를 이용한 화물자동차 투어유형 선택행태 분석)

  • Kim, Han-Su;Park, Dong-Ju;Kim, Chan-Seong;Choe, Chang-Ho;Kim, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.43-54
    • /
    • 2010
  • In recent years there have been studies on tour based approaches for freight travel demand modelling. The purpose of this paper is to analyze tour type choice behavior of commercial vehicles which are divided into round trips and chained tours. The methods of the study are based on the decision tree and the logit model. The results indicates that the explanation variables for classifying tour types of commercial vehicles are loading factor, average goods quantity, and total goods quantity. The results of the decision tree method are similar to those of logit model. In addition, the explanation variables for tour type classification of small trucks are not different from those for medium trucks', implying that the most important factor on the vehicle tour planning is how to load goods such as shipment size and total quantity.