• Title/Summary/Keyword: vehicle door design

Search Result 56, Processing Time 0.037 seconds

An Advanced Prediction Technology of Assembly Tolerance for Vehicle Door (차량도어 조립공차 예측기술 개발)

  • Jeoung, Nam-Yeoung;Cho, Jin-Hyung;Oh, Hyun-Seung;Lee, Sae Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.91-100
    • /
    • 2018
  • The setting of values on door hinge mounting compensation for door assembly tolerance is a constant quality issue in vehicle production. Generally, heuristic methods are used in satisfying appropriate door gap and level difference, flushness to improve quality. However, these methods are influenced by the engineer's skills and working environment and result an increasement of development costs. In order to solve these problems, the system which suggests hinge mounting compensation value using CAE (Computer Aided Engineering) analysis is proposed in this study. A structural analysis model was constructed to predict the door gap and level difference, flushness through CAE based on CAD (Computer Aided Design) data. The deformations of 6-degrees of freedom which can occur in real vehicle doors was considered using a stiffness model which utilize an analysis model. The analysis model was verified using 3D scanning of real vehicle door hinge deformation. Then, system model which applying the structural analysis model suggested the final adjustment amount of the hinge mounting to obtain the target door gap and the level difference by inputting the measured value. The proposed system was validated using the simulation and showed a reliability in vehicle hinge mounting compensation process. This study suggests the possibility of using the CAE analysis for setting values of hinge mounting compensation in actual vehicle production.

Structural Weld Strength Analysis on Door Hinge of Field Artillery Ammunition Support Vehicle (자주포용 탄약 운반 궤도차량 도어힌지 용접부 구조강도 해석)

  • Kang, Hyeon-Je;Kim, Byeong-Ho;Kim, Byung-Hyun;Seo, Jae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.58-65
    • /
    • 2016
  • This study analyzed the structural weld strength for a door hinge for a field artillery ammunition support vehicle. In order to determine the optimal conditions, we measured the modal analysis and analyzed the leg length of a rear door hinge. From these methods, we acquired the vibration frequency of normal mode and the optimal welding leg length conditions. It was possible to obtain a structural stability for a rear door hinge of the field artillery ammunition support vehicle. In the future, this should be used as a reference source for the weld strength analysis of high vibration and high weight structures for another welding system design.

The Section Design of Press Door Impact Beam for Improving Bending Strength (굽힘 강도 향상을 위한 프레스 도어 임팩트 빔의 단면 설계)

  • Jo, Kyeongrae;Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.74-81
    • /
    • 2017
  • The door impact beam of the side-impacted vehicle plays a key role in securing occupant safety by preventing intrusion from the impacting vehicle. Despite the low production cost, the press door impact beam has been adopted sparingly because of the strength inferiority. In this study, the design technologies of the press beam aimed at improving bending strength were investigated. First, the effect of the section shape and size was examined. Next, thickness and material strength were increased. Also, the TRB beam application was simulated by varying combined thickness. Some TRB beams with reduced weight exhibited bending strength over the strength of the pipe beam. Then, the beam with a closed center section also showed remarkably enhanced maximum bending strength.

A Design on the TMS-DCU Interface for Low and High Level Railway Platforms (저상 및 고상 철도 승강장 겸용 승강문 제어유닛과 열차모니터링시스템의 인터페이스 설계)

  • Kim, Chul-Su;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.325-330
    • /
    • 2014
  • In order to operate trains both mainline railroad platform and metropolitan subway line platform, it is necessary to develop the door step equipment of the rolling stock regardless of low(500mm, mainline) and high level platforms(1,135mm, metropolitan subway line) because of the requisite door safety system. In this study, TMS-DCU interface is studied for low and high level railway platforms. As a result, Design circuit of TMS(Train Management System)-DCU(Door Control Unit) interface is suitable for telescopic sliding type doorstep unit to minimize damage to the carbody underframe of railway vehicles.

KEY TECHNIQUES IN DEVELOPMENT OF VEHICLE GLASS DROP DESIGN SYSTEM

  • Liu, B.;Jin, C.N;Hu, P.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.327-335
    • /
    • 2007
  • A new optimization scheme and some key techniques are proposed in the development of a vehicle glass drop design software system. The key issues of the design system are how to regenerate the glass surface and make the vehicle glass drop down along the glass channels. To resolve these issues, a parameterized model was created at first, in which the optimizing method and Knowledge Fusion techniques were adopted the optimized process was then written into the glass drop design system by coding with C language and UGS/Open Application Programme Interface functions etc. Therefore, the designer or engineer can simulate the process of glass dropping along the channels to assess the potential interference between glass and door accessory by using this software system. All of the testing results demonstrate the validity of the optimizing scheme, and the parametric design software effectively solves the key issues on development of the door accessory package.

The Process Development of Automotive Light-Weighting Door using High Strength Steel (고장력강을 이용한 자동차 경량 도어 개발 프로세스)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.55-62
    • /
    • 2017
  • This paper proposes the process to develop a light-weighting automotive door assembly using high strength steel with low cost penalty. In recent years, the automotive industry is making an effort to reduce the vehicle weight. In this study, inner panels for automotive front door using thinner sheets and quenchable boron steel were designed to reduce the weight of conventional one. In order to evaluate the stiffness properties for the proposed door design, the several static tests were conducted using the finite element method. Based on the simulation results, geometry modifications of the inner panels were taken into account in terms of thickness changes and cost saving. Furthermore, a prototype based on the proposed design has been made, and then static stiffness test carried out. From the results, the proposed door is proved compatible and weight reduction of 11.8% was achieved. It could be a reference process for automotive industry to develop the similar products.

Application of Anti-Drag System in the Passenger Door (객실 출입문의 Anti-Drag 시스템 적용)

  • Jung, Hwa-Sic;Park, Kyeong-Bong;Park, Jae-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1348-1356
    • /
    • 2011
  • The passenger side entrance door is very important system that make boarding and getting off the passengers. During the passenger door closing, there is some obstacles between door panels, passenger door can detect the obstacle and obstacle is remained between door panels, vehicle can no possible to move. But passenger door can not detect the obstacle if obstacle is too thin such as clothes and belts. So, anti-drag system is applied the to make detect these thin obstacle. Therefore, we survey the characteristic, function and its activation scenario of anti-drag system and present the passenger door system that latest applied anti-drag system that can be a help to make design.

  • PDF

Optimal Design of Passenger Airbag Door System Considering the Tearseam Failure Strength (티어심 파손 강도를 고려한 동승석 에어백 도어시스템의 최적 설계)

  • Choi, Hwanyoung;Kong, Byungseok;Park, Dongkyou
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.60-68
    • /
    • 2021
  • Invisible passenger airbag door system of hard panel types must be designed with a weakened area such that the side airbag will deploy through the instrument panel as like intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test. If the advanced airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of invisible passenger airbag (IPAB) door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. It was introduced the 'Operating Window' idea from quality engineering to design the hard panel types of IPAB door system applied to the advanced airbag for optimal deployment and head impact performance. Zigzab airbag folding and 'n' type PAB mounting bracket were selected.

Construction of Vehicle Door Impact Beam Using Hot Stamping Technology (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo;Lim, Hyun-Woo;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.797-803
    • /
    • 2010
  • A vehicle door impact beam made of a thin sheet of steel has been constructed using hot stamping technology with the aim of ensuring occupant safety in the event of a side collision. This technology has been used to increase the strength of the vehicle body parts and to reduce the weight of the door impact beam as well as the number of work processes. Mechanical tests were performed to determine the material properties of the hot-stamped specimen and the results of the tests were used as input data in stamping and structural simulation in order to obtain the optimal design of door impact beam. The strength of the hot-stamped door impact beam increased to a value that was 102% higher than that of conventional pipe-shaped door impact beam. A weight reduction of 34% was also achieved.