• Title/Summary/Keyword: vehicle distance

Search Result 1,212, Processing Time 0.031 seconds

Efficient Parking Management through The Investigation of Car License Plate Using Camera (카메라를 이용한 차량 번호판 조사를 통한 효율적 주차 관리)

  • Lee, Kang-Ho;Shin, Seong-Yoon;Choi, Byeong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.11
    • /
    • pp.145-151
    • /
    • 2013
  • This research is to suggest a method for investigating car number plates among the information managed in parking facilities. The investigation of car number plate is generally used to know how long vehicles are parked. Also, it can provide the information about the parking turnover rate and the mean parking duration of parked vehicles. This research performs the investigation using cameras at a distance of time. That is, the given distance of time from cameras is assigned to each parked vehicle, and then it can find the mean parking time of parked vehicles. Also, it can check the parking turnover rate of parked vehicles at a space unit of parking lot in an hour. The information such as the mean parked duration and the parking turnover rate of parked vehicles taken from this method is helpful to find and understand the inefficient use of parking facilities. With this suggested method, this research attempted to check the mean parking duration and the parking turnover rate of parked vehicles.

Flexible Formation Algorithm for Multiple UAV Using the Packing (패킹을 이용한 다수 무인기의 유동적 대형 형성 알고리즘)

  • Kim, Hyo-Jung;Kim, Jeong-Hun;Kim, Moon-Jung;Ryoo, Chang-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.211-216
    • /
    • 2021
  • Multiple UAV System has been used for various purposes such as reconnaissance, networking and aerial photography. In such systems, it is essential to form and maintain the formation of multiple UAVs. This paper proposes the algorithm that produces an autonomous distributed control for each vehicle for a flexible formation. This command is a repulsive force in the form of the second-order system by the nearest UAV or mission area. The algorithm uses the relative position/speed through sensing and communication for calculating the command without external intervention. The command allows each UAV to follow the reference distance and fill the mission area as densely as possible without overlapping. We determine the reference distance via optimization technique solving the packing problem. The mission area comprises the desired formation outline and can be set flexibly depending on the mission. Numerical simulation is carried out to verify the performance of the proposed algorithm under a complex and flexible environment. The formation is formed in 26.94 seconds and has a packing density of 71.91%.

Multiple Drones Collision Avoidance in Path Segment Using Speed Profile Optimization (다수 드론의 충돌 회피를 위한 경로점 구간 속도 프로파일 최적화)

  • Kim, Tae-Hyoung;Kang, Tae Young;Lee, Jin-Gyu;Kim, Jong-Han;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.763-770
    • /
    • 2022
  • In an environment where multiple drones are operated, collisions can occur when path points overlap, and collision avoidance in preparation for this is essential. When multiple drones perform multiple tasks, it is not appropriate to use a method to generate a collision-avoiding path in the path planning phase because the path of the drone is complex and there are too many collision prediction points. In this paper, we generate a path through a commonly used path generation algorithm and propose a collision avoidance method using speed profile optimization from that path segment. The safe distance between drones was considered at the expected point of collision between paths of drones, and it was designed to assign a speed profile to the path segment. The optimization problem was defined by setting the distance between drones as variables in the flight time equation. We constructed the constraints through linearize and convexification, and compared the computation time of SQP and convex optimization method in multiple drone operating environments. Finally, we confirmed whether the results of performing convex optimization in the 20 drone operating environments were suitable for the multiple drone operating system proposed in this study.

A method for automatically generating a route consisting of line segments and arcs for autonomous vehicle driving test (자율이동체의 주행 시험을 위한 선분과 원호로 이루어진 경로 자동 생성 방법)

  • Se-Hyoung Cho
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Path driving tests are necessary for the development of self-driving cars or robots. These tests are being conducted in simulation as well as real environments. In particular, for development using reinforcement learning and deep learning, development through simulators is also being carried out when data of various environments are needed. To this end, it is necessary to utilize not only manually designed paths but also various randomly and automatically designed paths. This test site design can be used for actual construction and manufacturing. In this paper, we introduce a method for randomly generating a driving test path consisting of a combination of arcs and segments. This consists of a method of determining whether there is a collision by obtaining the distance between an arc and a line segment, and an algorithm that deletes part of the path and recreates an appropriate path if it is impossible to continue the path.

Dynamic Behavior Analysis of PSC Train Bridge Friction Bearings for Considering Next-generation High-speed Train (차세대 고속철의 증속을 고려한 PSC 철도교 마찰 교량받침의 동적 거동 해석)

  • Soon-Taek Oh;Seong-Tae Yi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.39-46
    • /
    • 2023
  • In this study, the dynamic behavior of friction bearings of PSC (Pre-Stressed Concrete) box train continuous bridge was numerically analyzed at 10 km/h intervals up to 600 km/h according to the increasing speed of the next-generation high-speed train. A frame model was generated targeting the 40-meter single-span and two-span continuous PSC box bridges in the Gyeongbu High-Speed Railway section. The interaction forces including the inertial mass vehicle model with 38 degrees of freedom and the irregularities of the bridge and track were considered. It was calculated the longitudinal displacement, cumulative sliding distance and displacement speed of the bridge bearings at each running speed so that compared with the dynamic behavior trend analysis of the bridge. In addition, long-term friction test standards were applied to evaluate the durability of friction plates.

Minimum Separation Distance Calculation for Small Unmanned Aerial Vehicles using Flight Simulation (비행 시뮬레이션을 이용한 소형 무인항공기의 최소 분리 거리 산출)

  • Junyoung Han
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.15-20
    • /
    • 2024
  • The utilization of small unmanned aerial vehicles (UAVs) has expanded into both military and civilian domains, increasing the necessity for research to ensure operational safety and the efficient utilization of airspace. In this study, the calculation of minimum separation distances for the safe operation of small UAVs at low altitudes was conducted. The determination of minimum separation distances requires a comprehensive analysis of the total system errors associated with small UAVs, necessitating sensitivity analysis to identify key factors contributing to flight technology errors. Flight data for small UAVs were acquired by integrating the control system of an actual small UAV with a flight simulation program. Based on this data, operational scenarios for small UAVs were established, and the minimum separation distances for each scenario were calculated. This research contributes to proposing methods for utilizing calculated minimum separation distances as crucial parameters for ensuring the safe operation of small unmanned aerial vehicles in real-world scenarios.

An Estimation of the Minimum Distance Between a Roundabout and Signal Crosswalk Using VISSIM (VISSIM분석을 통한 회전교차로 인접 신호횡단보도의 최소이격거리 산정)

  • KIM, Young Beom;LEE, Dongmin;Jun, Jin Woo;Cho, Hanseon
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.4
    • /
    • pp.337-347
    • /
    • 2015
  • Since the application of roundabouts by 2010 have been started, more than 350 roundabouts were installed in Korea. Recently the types of constructed roundabouts become various, and the intersection conditions for installing roundabouts were also various. However, there were some difficulties to install roundabouts around school zone due to safety problems. In this study, appropriate distance from adjacent signal crosswalks to roundabouts were estimated for securing pedestrian safety and operation efficiency around school zone. With the analyses, the minimum distance standard was suggested to obtain operational effectiveness of roundabout according to traffic volume, traffic flow, pedestrian green time and secures pedestrian safety and convenience. In this paper, average delay of roundabout as various length of distances between an adjacent crosswalk and a roundabout as different pedestrian signal times, traffic volumes, traffic flow rates were analyzed. Through this study, it was found that about four times of delay in a roundabout was generated if there was adjacent signal crosswalk. However if there is enough distance between an adjacent crosswalk and a roundabout, the value of increasing delay on roundabouts with adjacent a signalized crosswalk can be considerably reduced. Critical value of the distance between a roundabout and a signal crosswalk in case of roundabouts within 200-500 vehicle/hour/lane entry traffic flow, 20-40% of left turn traffic, and over 15 seconds pedestrian green time was about 50 meters. In conclusion, if there is minimum 40 meter distance from roundabouts, adjacent signal crosswalks can be installed and operated for students' safety around school zone.

Study on the Installation warrants of staggered crosswalk traffic island on Urban Streets - Focusing on pedestrian safety and service level - (도시부가로 이단 횡단보도 교통섬 설치 준거에 관한 연구 - 보행자 안전과 서비스수준을 중심으로 -)

  • Shim, Kwan-Bo;Kim, Joong-Hyo;Park, Kyung-Woo;Ha, Dong-Ik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.6
    • /
    • pp.97-107
    • /
    • 2013
  • On the Staggered Crosswalks, pedestrians cross the crosswalks two times. This method can reduce the cycle, the vehicle delay and the walking distance by increasing the major direction of green time. The safety of pedestrians is also effective. This study suggests the warrant of the facilities of island width and length etc. by considering the road structure and pedestrians. Also this study suggests the standard of the safety through the accident analysis of Staggered crosswalks and General Crosswalks. In the results, accident rate of the Staggered Crosswalks 18.3(100 million vehicle-km) was lower than the accident rate of the General Crosswalks 28.3(100million vehicle-km). By understanding the start point of crossing of the Staggered Crosswalks, the analysis of the location and types of accident suggests the safety zone(spare space). The setting warrants of Staggered Crosswalks are 4 lane over the road and the 2 meter over sidewalk width of island. The minimum length of the Pedestrian island was doubled compared to the crosswalks width. And the maximum length was set by considering the wait time of the pedestrians.

Measurement of Micro Gas Turbine Power Pack Performance for Electric Vehicle Range Extenders Under Various Electrical Loads and Gear Ratios (전기자동차 레인지익스텐더를 위한 초소형 가스터빈 파워팩의 전기 부하 및 동력전달 기어비에 따른 성능 실험)

  • Sim, Kyuho;Park, Jisu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.371-378
    • /
    • 2015
  • Range extenders, which are power generation systems driven by small engines, extend the driving distance and time of electric vehicles (EVs) through continuous charging of batteries. The currently used range extenders with gasoline engines pose limitations with regard to the realization of high-power compact systems, owing to their complex structure and low energy density. In contrast, micro gas turbine (MGT) range extenders (MGT power packs) possess high power and low weight, and can therefore be significantly reduced in size despite increase in speed. In this study, an MGT power pack for the range extenders of EVs was developed using a turbo-prop micro turbine, an alternator for passenger vehicles and electric batteries. The operating characteristics of the MGT power pack were measured through a series of experiments conducted under electrical no-load and load conditions. Their power generation performance and efficiency were measured under various electrical loads and power transmission gear ratios. From the results, electrical load was found to have no influence on power generation performance. The maximum electrical power output was 0.8 kW at a core turbine speed of 150 krpm, and the application of 3:1 reduction gear to the turbine output shaft increased the power to 1.5 kW by 88%. This implies that the test results demonstrated stable power generation performance of the MGT power pack regardless of vehicle load changes, thus revealing its feasibility for use with the range extenders of EVs.

Development of Digital Image Acquisition System for the Road Safety Survey and Analysis Vehicle (도로안전성 조사분석차량을 위한 영상취득시스템 개발)

  • Jeong, Dong-Hoon;Yoon, Chun-Joo;Sung, Jung-Gon
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.163-171
    • /
    • 2005
  • Current roads were designed and constructed based on the design criteria and thus those were overly simplified drivers' needs. The road criteria do not suggest the desirable range of the design values but suggest the minimum requirements for the road design. Therefore, a completed road design based on the design criteria does not always guarantee the best design in terms of safety and it sometimes violates drivers' expectation. Therefore, the ROSSAV(ROad Safety Survey and Analysis Vehicle) is being developed by the KICT to evaluate road safety and increase driving safety. In this paper, the image capture system was described in detail. The image capture system is consisted of two front view cameras, two side down-looking cameras and a synchronization device. Two front view cameras were used to take a picture of road and road facilities at the driver's viewpoint. Also, two side down-looking cameras were used to capture road surface image to extract lane markings. A synchronization device were used to generate image capturing signal at the fixed distance spacing huck as every 10m. The front view images could be used to calculate and measure highway geometry such as shoulder width because every image is saved with it's locational information. And also the side down looking images could be used to extract median lane mark which representing road alignement efficiently.

  • PDF