• Title/Summary/Keyword: vehicle distance

Search Result 1,212, Processing Time 0.023 seconds

Design Optimization of Single-Stage Launch Vehicle Using Hybrid Rocket Engine

  • Kanazaki, Masahiro;Ariyairt, Atthaphon;Yoda, Hideyuki;Ito, Kazuma;Chiba, Kazuhisa;Kitagawa, Koki;Shimada, Toru
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.29-33
    • /
    • 2015
  • The multidisciplinary design optimization (MDO) of a launch vehicle (LV) with a hybrid rocket engine (HRE) was carried out to investigate the ability of an HRE for a single-stage LV. The non-dominated sorting genetic algorithm-II (NSGA-II) was employed to solve two design problems. The design problems were formulated as two-objective cases involving maximization of the downrange distance over the target flight altitude and minimization of the gross weight, for two target altitudes: 50.0 km and 100.0 km. Each objective function was empirically estimated. Several non-dominated solutions were obtained using the NSGA-II for each design problem, and in each case, a trade-off was observed between the two objective functions. The results for the two design problem indicate that economical performance of the LV is limited with the HRE in terms of the maximum downrange distances achievable. The LV geometries determined from the non-dominated solutions were examined.

Numerical Simulation of the Aeolian Tone Generated from Two-dimensional Circular Cylinder (2차원 원주로부터 발생하는 Aeolian tone의 수치계산)

  • Kang, Ho-Keun;Ro, Ki-Deok;Son, Yeong-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.234-239
    • /
    • 2002
  • Acoustic sounds generated by a uniform flow around a two-dimensional circular cylinder at Re=200 are simulated using finite difference lattice Boltzmann method. A third-order-accurate up-wind scheme is used for spartial derivatives, and a second-order-accurate Runge-Kutta scheme is used for time marching. The results show that in capturing very small acoustic pressure fluctuation with same frequency of Karman vortex street compared with the pressure fluctuation around a circular cylinder. The propagation velocity of acoustic sound is presented that acoustic which approaches tire upstream due to Doppler effect in the uniform flow slowly propagates, while that for the downstream quickly propagates. It is also apparent that the size of sound pressure is proportional for central distance $r^{-1/2}$ of the cylinder.

  • PDF

Performance of CSK Scheme for V2I Visible Light Communication

  • Kim, Hyeon-Cheol;Kim, Byung Wook;Jung, Sung-Yoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.595-601
    • /
    • 2015
  • These days, research related to Intelligent Transportation System (ITS) technology is being widely considered. ITS is inevitable for future transportation systems to reduce accidents, congestion, and offer a smooth flow of traffic. The use of Visible Light Communication (VLC) in ITS systems has been considered widely because of its EMC/EMI free and LED infrastructure reusable properties. Among the VLC schemes, this study analyzed the performance of the Color Shift Keying (CSK) scheme under a Vehicle-to-Infrastructure (V2I) downlink scenario to verify the capability of CSK as a communication tool for ITS. By modeling daylight noise using the modified Blackbody radiation model, this study examined the performance of V2I VLC under daytime conditions. The relationship between BER, the communication distance, and the amount of ambient-light noises under the pre-described V2I scenario were determined by simulations.

Characteristics of Wheel Tread for Urban Train Based on Contact Positions (접촉위치에 따른 도시철도 차륜 답면의 특성 변화)

  • Kwon, Seok-Jin;Noh, Hang-Nak;Nam, Yoon-Su;Seo, Jung-Won;Lee, Dong-Hyung
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.524-529
    • /
    • 2008
  • The damaged wheel in railway vehicle would cause a poor ride comfort, a rise in the maintenance cost and even fracture of the wheel, which then leads to a tremendous social and economical cost. The defect initiation and crack propagation in wheel may result in the damage of the railway vehicle or derailment. Therefore, it is important to evaluate the characteristics of the wheel tread. In the present paper, the characteristics of wheel tread based on contact positions, running distance and brake pattern are evaluated. The result shows that the damaged wheel tread is remarkably depended on the contact positions between wheel and rail.

A Study on the Design and Measurement of Pin Press-Fit Device for Fastening Differential Gear Case and Pinion Shaft (Differential gear case와 피니언 샤프트 체결을 위한 핀 압입 장치설계 및 측정에 관한 연구)

  • Jang, T.H.;Gwon, J.U.;Eum, J.H.;Kim, J.A.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.1
    • /
    • pp.25-30
    • /
    • 2021
  • The differential gear system is a device designed to distribute the driving force of both vehicle wheels and control the rotational speed when the vehicle turns on a curve. The differential device consists of a differential gear case, a ring gear, and a pressure ring. A differential pinion gear and side gear are mounted on the differential pinion shaft inside the differential gear case. In this study, a pin press-fitting device that mounts the pinier gear and side gear to the differential pinion shaft in the differential gear case was designed, and a jig device for pin press-fitting using servo press was developed. In addition, by precisely measuring the pin press-in load and press-in distance according to the pin hole diameter of the differential gear shaft, the optimization of the pin pressin process was established.

Analysis of Elderly Driving Performance at Urban Skewed Intersection using Driving Simulator (고령 운전자 도심부 비 직각 교차로 운전행태 분석)

  • Ha, Tae-Woong;Hong, Seung-Jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 2022
  • In this study, the driving performances of elderly who's age is over 65 were evaluated. The driving simulation was conducted using a compact driving simulation (CDS) and the simulation scenarios were developed from actual roads by replicating geometry of skewed intersection and traffic control devices located in Jungnang-gu, Seoul, Korea. 27 elderly drivers and 10 non-elderly drivers were recruited and participated on the virtual turning right and going straight driving experiment of CDS. Virtual driving data of driving time, speed, distance, acceleration and deceleration speeds, brake power, and steering wheel rotation angle were recorded and analyzed. Generally, elderly driver took more times to pass through the skewed intersection road and showed lower approaching speed as much as 40% and 25% in case of turning right and going straight scenarios respectively. The speed deviation at skewed intersection road between elderly and non-elderly driver is expected to cause frequent lane changes and overtaking.

On the Integrated process of RSS model and ISO / DIS 21448 (SOTIF) for securing autonomous vehicle safety (자율주행 자동차 안전성 확보를 위한 RSS 모델 및 ISO/DIS 21448 (SOTIF) 통합 프로세스 구축에 관한 선행연구)

  • Kim, Min Joong;Kim, Tong Hyun;Kim, Young Min
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.129-138
    • /
    • 2021
  • Today, as the number of vehicles equipped with autonomous driving functions increases, the use of various sensors increases, and the complexity of system configuration increases. The ISO 26262 standard was published to prevent caused by systematic errors. Recently, the issue of external environmental factors rather than mechanical failure has increased. This issue is a problem outside of the scope of ISO 26262, and the ISO/DIS 21448 standard was published to solve this problem. Also, Mobileye proposed the RSS model that defined safe distance for dangerous situations in order to secure the safety of autonomous vehicles and who is responsible in case of an accident. In this paper, integrated process of ISO 21448 and RSS model, and through these results, we expect that possible to contribute to securing the safety and reliability of autonomous vehicles in the future.

Commercial ECU-Based Test-Bed for LIN-CAN Co-Analysis and Proof on Ultrasonic Sensors through Physical Error Injection (실차기반 LIN-CAN 연계 통합 분석 테스트베드 개발과 초음파센서 물리적 오류주입 및 분석을 통한 효용성 검증)

  • Yoon-ji Kim;Ye-ji Koh;In-su Oh;Kang-bin Yim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.2
    • /
    • pp.325-336
    • /
    • 2023
  • With the development of autonomous driving technology, the number of external contact sensors mounted on vehicles is increasing, and the importance is also rising. The vehicular ultrasonic sensor uses the LIN protocol in the form of a bus topology and reports a status message about its surroundings through the vehicle's internal network. Since ultrasonic sensors are vulnerable to various threats due to poor security protocols, physical testing on actual vehicle is needed. Therefore, this paper developed a LIN-CAN co-analysis testbed with a jig for location-specific distance test to examine the operational relation between LIN and CAN caused by ultrasonic sensors.

A Study on the Tracking Algorithm for BSD Detection of Smart Vehicles (스마트 자동차의 BSD 검지를 위한 추적알고리즘에 관한 연구)

  • Kim Wantae
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.2
    • /
    • pp.47-55
    • /
    • 2023
  • Recently, Sensor technologies are emerging to prevent traffic accidents and support safe driving in complex environments where human perception may be limited. The UWS is a technology that uses an ultrasonic sensor to detect objects at short distances. While it has the advantage of being simple to use, it also has the disadvantage of having a limited detection distance. The LDWS, on the other hand, is a technology that uses front image processing to detect lane departure and ensure the safety of the driving path. However, it may not be sufficient for determining the driving environment around the vehicle. To overcome these limitations, a system that utilizes FMCW radar is being used. The BSD radar system using FMCW continuously emits signals while driving, and the emitted signals bounce off nearby objects and return to the radar. The key technologies involved in designing the BSD radar system are tracking algorithms for detecting the surrounding situation of the vehicle. This paper presents a tracking algorithm for designing a BSD radar system, while explaining the principles of FMCW radar technology and signal types. Additionally, this paper presents the target tracking procedure and target filter to design an accurate tracking system and performance is verified through simulation.

Object Detection and Localization on Map using Multiple Camera and Lidar Point Cloud

  • Pansipansi, Leonardo John;Jang, Minseok;Lee, Yonsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.422-424
    • /
    • 2021
  • In this paper, it leads the approach of fusing multiple RGB cameras for visual objects recognition based on deep learning with convolution neural network and 3D Light Detection and Ranging (LiDAR) to observe the environment and match into a 3D world in estimating the distance and position in a form of point cloud map. The goal of perception in multiple cameras are to extract the crucial static and dynamic objects around the autonomous vehicle, especially the blind spot which assists the AV to navigate according to the goal. Numerous cameras with object detection might tend slow-going the computer process in real-time. The computer vision convolution neural network algorithm to use for eradicating this problem use must suitable also to the capacity of the hardware. The localization of classified detected objects comes from the bases of a 3D point cloud environment. But first, the LiDAR point cloud data undergo parsing, and the used algorithm is based on the 3D Euclidean clustering method which gives an accurate on localizing the objects. We evaluated the method using our dataset that comes from VLP-16 and multiple cameras and the results show the completion of the method and multi-sensor fusion strategy.

  • PDF