• Title/Summary/Keyword: vehicle curb weight

Search Result 12, Processing Time 0.026 seconds

A study on Greenhouse gas Emission Characteristics of Conventional Passenger and Hybrid Electric Vehicles (승용 및 하이브리드 자동차 온실가스 배출특성 연구)

  • Lim, Yun Sung;Mun, Sun Hee;Chung, Taek Ho;Lee, Jong Tae;Dong, Jong In
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 2020
  • Automotive manufacturers are applying technologies for greenhouse gas reduction such as vehicle weight reduction, engine downsizing, direct injection technology, variable valves and transmission performance improvement to achieve the targets for enhanced greenhouse gas and fuel consumption efficiency. In this paper, compared and analyzed greenhouse emissions according to engine capacity, engine displacement, curb weight and sales volume of hybrid and internal combustion engine passenger vehicles. Hybrid emit 32~39% less greenhouse gas than internal combustion engines through the combined mode test method. Hybrid electric vehicle's curb weight was about 7% heavier on average for the same engine displacement, while greenhouse gas was about 36% lower. It was confirmed that in order to reduce the emission of pollutants of greenhouse gases as well as the air pollutants, it is necessary to expand the supply of eco-friendly vehicles.

Evaluation of Impact Resistance for Concrete Median Barrier Depending on Vehicle Curb Weight, Concrete Cover Depth and Level of Deterioration (트럭 공차중량, 중앙분리대 피복두께 및 열화수준에 따른 중앙분리대 충돌해석모델의 민감도 분석)

  • Lee, Jaeha;Lee, Ilkeun;Jeong, Yoseok;Kim, Kyeongjin;Kim, WooSeok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.297-306
    • /
    • 2017
  • The concrete median barrier used currently in South Korea was developed the impact level of SB5-B(270kJ). However, the impact level of SB6(420kJ) should be considered in many placed with the increased accident of heavy vehicles. In order to increase the impact resistance of newly developed concrete median barrier, the computer simulation was conducted before real field test. For the accurate behavior of concrete, the parameter, such as impact vehicle, concrete cover depth and deterioration, was important. In this paper, a parametric study was conducted depending on vehicle curb weight, concrete cover depth and level of deterioration. The impact resistance of concrete median barrier was severely changed depending on vehicle curb weight and concrete cover depth. Furthermore, the impact resistance of concrete median barrier was also decreased due to deterioration of concrete, therefore the repair and rehabilitation should be conducted for damaged concrete depending on deterioration level. Therefore, vehicle curb weight, cover depth of concrete structures and deterioration level of concrete should be carefully considered for conducting analysis of concrete structure to vehicle collision.

A Study on Greenhouse Gas Emission Characteristics of Passenger Car and Van with LPG Fuel According to Displacement and Vehicle Weight (배기량과 차량중량에 따른 LPG 연료를 사용하는 승용 및 승합형 자동차 온실가스 배출 특성에 관한 연구)

  • KIM, HYUNG JUN;LEE, JONG TAE;LIM, YUN SUNG;YUN, CHANG WAN;KEEL, JI HOON;HONG, YOU DEUK
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.497-502
    • /
    • 2018
  • In Korea, passenger car and van using LPG fuel including taxi constantly increased due to the high cost of fuel. Recently, the emission standard has continuously tightened in the world. In this investigation was conducted the greenhouse gas emission characteristics of LPG vehicles according to the displacement and weight. Exhaust emission characteristics of 13 test LPG vehicles from about 1.0 L to 3.0 L displacements were measured and analyzed by using chassis dynamometer and emission analyzer. It is revealed that the greenhouse gas emission was showed the increasing tendency as the displacement and curb weight increased. Also, greenhouse gas emission of SC03 driving cycle has highest value and that of HWFET driving cycle shows the lowest value.

Evaluation of the Impact of Fuel Economy by Each of Driving Modes for Medium-Size Low-Floor Bus (중형저상버스의 개별주행모드에 따른 연료소비율 평가)

  • Jung, Jae-wook;Ro, Yun-sik;Ahn, Byong-kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.133-140
    • /
    • 2016
  • The Ministry of Land, Infrastructure and Transport has introduced low-floor buses, which are convenient for passengers getting on and off the bus and for the handicapped. The standard bus model is 11 m long and uses compressed natural gas (CNG). However, this model has drawbacks in narrow rural road conditions such as those in farming and fishing villages and mountainous areas, as well as difficulty in refueling since CNG facilities are not readily available. In this study, running resistance values were obtained by coasting performance tests on actual roads using a Tata Daewoo LF-40 model with three different weight conditions: curb vehicle weight (CVW), half vehicle weight (HVW), and gross vehicle weight (GVW).The test methods include WHVC, NIER-06, and constant-speed driving at 60 km/h. These tests were used to measure the fuel economy of vehicles other than the target vehicles to obtain the combined fuel economy. The energy efficiency was highest in the case of CVW. In the WHVC mode, the fuel consumption rates of HVW and GVW were typically 3.5% and 12% higher than that of CVW, respectively. In constant-speed driving, the fuel efficiency of HVW was higher than that of CVW. Further research is required to analyze the exhaust gas data.

DYNAMIC SIMULATION MODEL OF A HYBRID POWERTRAIN AND CONTROLLER USING CO-SIMULATION - PART I: POWERTRAIN MODELLING

  • Cho, B.;Vaughan, N.D.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.459-468
    • /
    • 2006
  • The objective of this paper is the development of the forward-looking dynamic simulation model of a hybrid electric vehicle(HEV) for a fuel economy study. The specification of the vehicle is determined based on two factors, engine peak power to curb weight ratio and specific engine power. The steady state efficiency models of the powertrain components are explained in detail. These include a spark ignition direct injection(SIDI) engine, an integrated starter alternator(ISA), and an infinitely variable transmission(IVT). The paper describes the integration of these models into a forward facing dynamic simulation diagram using the AMESim environment. Appropriate vehicle and driver models have been added and described. The controller was designed in Simulink and was combined with the physical powertrain model by the co-simulation interface. Finally, the simulation results of the HEV are compared with those of a baseline vehicle in order to demonstrate the fuel economy potential. Results for the vehicle speed error and the fuel economy over standard driving cycles are illustrated.

EXPERIMENTAL EVALUATION OF USED CARS FOR FRONTAL COLLISION COMPATIBILITY

  • Lim, J.H.;Park, I.S.;Heo, S.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.715-720
    • /
    • 2006
  • This research investigates injury values and vehicle deformation for vehicle frontal crash compatibility. To investigate compatibility in an individual case, it is possible to impact two vehicles and evaluate the injury values and deformations in both vehicles. In this study, four tests were conducted to evaluate compatibility. A large and mini vehicle were subjected to a frontal car-to-car crash test at a speed of 48.3 km/h with an offset of 40%. An inclination car-to-car crash test using the large and small vehicle were conducted at 30 km/h at a $30^{\circ}$ angle. The results of the 48.3 km/h, car-to-car frontal crash revealed extremely high injury values on the chest and upper leg of the Hybrid III 50% driver dummy with seatbelt in the mini vehicle compared to the large vehicle. For the 30 km/h, car-to-car inclination crash, however, injury values in the small vehicle were 1.5 times higher compared to the large vehicle.

A Study on Vehicle Crash Characteristics with RCAR Crash Test in Compliance with the New Test Condition (동일 승용차량에 대한 RCAR 신.구 충돌시험을 통한 차체 충돌특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.190-194
    • /
    • 2006
  • This research investigates vehicle structure acceleration and vehicle deformation with RCAR crash test. To investigate vehicle damage characteristics in an individual case, it is possible to RCAR low speed crash test. In this study, two tests were conducted to evaluate difference between RCAR new condition and RCAR old condition. A two large vehicles were subjected to a frontal crash test at a speed of 15km/h with an offset of 40% $10^{\circ}$ angle barrier and flat barrier. The results of the 15km/h with an offset of 40% $10^{\circ}$ angle barrier revealed high acceleration value on the vehicle structure and high repair cost compared to the RCAR 15km/h with an offset of 40% flat barrier. So in order to improve damage characteristics in low speed crash of vehicle structure and body component of the monocoque type passenger vehicles, the end of front side member and front back beam should be designed with optimum level and to supply the end of front side member as a partial condition approx 300mm.

A Research on the Emissions According to Test Modes of Diesel Vehicles for Euro-6 (Euro-6 대응 경유 차량의 규제 시험모드에 따른 배출가스 성능 비교 분석)

  • Kang, Minkyung;Kwon, Seokjoo;Seo, Youngho
    • Journal of Institute of Convergence Technology
    • /
    • v.8 no.1
    • /
    • pp.5-8
    • /
    • 2018
  • Emissions of diesel vehicles have been regulated by NEDC mode for a long time. However, the NEDC mode has been known the control of emission reduction is not reflected properly on actual road conditions. For these reasons, diesel vehicle emissions are regulated in both NEDC mode and WLTC mode from 2017 to 2020, from 2020 onwards, the emissions of diesel vehicles will measure in WLTC mode only and will not be able to exceed 1.5 times the regulated value. The purpose of this study is to analyze the development trend of diesel vehicle after-treatment system in order to comply with the future regulations on diesel vehicle. As a result, it is essential to reduce the NOx emissions of diesel vehicles for Euro 6, the NOx emissions of the test vehicle equipped with SCR were 30% to 50% loss than the test vehicle equipped with LNT despite the higher curb weight and engine displacement.

Evaluation and Analysis of Wheel alignment Effecting on Tire Uneven Wear (휠 얼라이먼트 값과 타이어 편마모 영향도 평가 및 분석)

  • Chung, Soo-Sik;Jung, Won-Wook;Lee, Sang-Ju;Koh, Bum-Jin;Choi, Young-Sam
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1658-1662
    • /
    • 2007
  • The tire uneven wear has been an ongoing concern for a long time, and one of customer's complaints too. This paper deals with uneven wear improvement of passenger car tires, to have tested the tire wear levels by each wheel alignment set (according to changing toe and camber) using taxis. The pre-set wheel alignments on test vehicle were gained by energy friction simulation of tire. The result of this experiment was as follows : First, verified the effects of initial wheel alignment (adjusted at Curb Vehicle Weight) to minimize tire uneven wear. Second, tire uneven wear makes tire life much shorter than even wear does.

  • PDF

A Study on Human Injury Characteristics and Vehicle Body Deformation with Car to Car Crash Test for Crash Compatability (${\cdot}$${\cdot}$대형 중고 승용차량에 대한 차 대 차 충돌시험을 통한 차체변형 및 인체상해 특성에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.135-141
    • /
    • 2005
  • Currently many safety assessment tests are conducted by crashing a vehicle against a rigid or deformable barrier. It is quite rational to evaluate crash performance of a vehicle in a barrier test in terms of vehicle stiffness and strength. However, there has been a lot of debate on whether barrier testing is a duplicate of real world crash collisions. One of the issues is car to car compatability. There are two essential subjects in compatability. One is partner-protection when crashing into another vehicle and the other is self-protection when struck by another vehicle. When considering a car to car frontal crash between a mini car and a large heavy car, it is necessary to evaluate human body stiffness of each vehicle. In this study, in order to evaluate the compatability of cars in car-to-car crashes, four tests were conducted. Test speed of each car is 48.3km/h, and the overlap of the mini and large car is $40\%$, and the overlap of the small cars is $100\%$. In all tests, only a drive dummy is used. The test results of the car to car crash test show that vehicle safety standard of mini car is not satisfied compared with large heavy car and HIC value of mini car is higher than large car. In this case observed that the relatively lower stiffness and weight of the mini car resulted in absorbing a large share of the total input energy of the system when crashed into the large heavy car.