• Title/Summary/Keyword: vehicle body

Search Result 1,312, Processing Time 0.04 seconds

Analytical Method to Analyze the Tolerance Effect on the Vehicle Ride Comfort (차량 승차감에 미치는 공차의 영향 분석을 위한 해석적 방법)

  • Kim, Beom-Seok;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.549-555
    • /
    • 2008
  • Analytical method to analyze the tolerance effect on the vehicle ride comfort is suggested in this paper. Ride comfort is one of the most important performance indices which decide the vehicle design quality. In general, the ride comfort is affected by the variations of parameters of a vehicle model. Therefore, the effects of the parameters on the ride comfort need to be evaluated statistically based on the whole-body vibration of the vehicle. In this paper, weighted RMS values of the acceleration PSD of a seat position are used to define the ride comfort. The equations of motion and the sensitivity equations are derived based on a 5-DOF vehicle model. By employing the sensitivity information of the acceleration at the seat position, the tolerance effect on the vehicle ride comfort could be effectively analyzed.

Mathematical Model for Power Transmission - Vehicle System Coupling Analysis (동력전달계와 차량계의 연성 해석을 위한 수학적 모델의 개발)

  • Kong, Jin-Hyung;Park, Jin-Ho;Jo, Han-Sang;Park, Yeong-Il;Lee, Jang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.696-701
    • /
    • 2000
  • In this study, a mathematical model fur analyzing the shift characteristics is proposed. The proposed model comprises power transmission system and vehicle system, which are coupled. And On-road car test is carried out in order to extract model parameters. Tile model is composed of a detailed powertrain, an engine/AT housing, a simplified suspension system. tires and a vehicle body model. On the test, the vehicle accelerations and pitch ratio are measured by using accelerometers and gyro sensor. The other data, for example speeds, a throttle position and a brake signal, are taken from sensors which already exist in the vehicle. Using natural frequency and characteristic equation, vehicle model parameters are extracted from experimental data.

  • PDF

Parameter Sensitivity Analysis for Full Vehicle Model (전차량모델에 대한 설계변수 민감도 해석)

  • Nam, Kyung-Mo;Ha, Tae-Wan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.827-831
    • /
    • 2012
  • Passengers and mounted equipments on a vehicle are exposed to the vibration when it is driven on the road. To minimize the vibration and improve the dynamic characteristics of a vehicle are important factors. Those are changed by modifying parameters of the vehicle. To save development cost and time, simulation methods using vibration model have been widely used before making the real vehicle. In this paper two aimed functions, displacement between wheels and the body and acceleration of the body, have been defined for the parameter sensitivity analysis of the large vehicle. Full Vehicle Model having 11 degrees of freedom applied to solve those issues.

Crashworthiness Design Concepts for the Improved Energy Absorbing Performance of an Aluminum Lightweight Vehicle Body (알루미늄 경량 차체의 충돌에너지 흡수 성능 향상을 위한 설계 개선 연구)

  • 김범진;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.155-160
    • /
    • 2003
  • For the weight reduction of vehicle body up to 20∼30% compared to the conventional monocoque steel body·.in-white, most automotive manufacturers have attempted to develop the aluminum intensive body-in-white using an aluminum space frame. In this paper, the crush tests and simulations for the aluminum extrusions filled with the structural from are performed to evaluate the collapse characteristics of that light weighted material. From these studies. the effectiveness of structural for is evaluated in improving automotive crashworthiness. In order to improve the improve energy absorption capability of the aluminum space frame body, safety design modifications are performed and analyzed based on the suggested collapse initiator concepts and on the application of the aluminum extrusions filled with structural foam. The effectiveness of these design concepts on the frontal and side impact characteristics of the aluminum intensive vehicle structure is investigated and summarized.

An Study of Optimization on Vehicle Body Stiffness using CAE Application (CAE를 응용한 차체강성 최적화에 관한 연구)

  • 최명진;송명준;장승호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.129-134
    • /
    • 2001
  • One of the most important purposes in the design of machines and structures is to produce the most light products of the lowest price with satisfying function and performance. In this study, a scheme of design optimization for the weight down of vehicle body structure is presented. Design sensitivity of vehicle body structure is investigated and design optimization is performed to get weight down with the allowable stiffness of body in white. Stress, deformation and natural frequencies are the constraint of the optimization.

  • PDF

Optimum Design of Engine Mount System Considering Body Flexibility (차체의 유연성을 고려한 엔진마운트 최적설계)

  • 황인수;김태욱;박우선;고병식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.319-325
    • /
    • 1997
  • As customer's demand for vehicle comfort is getting increased, vibration problem is very important issue in vehicle development. Engine is the main factor causing vehicle vibration, so that we should isolate detrimental transmitted excitation from engine. In order to solve this problem engine mounting system was properly optimized. Simulation was performed not only rigid body mode analysis but also flexible body mode analysis. We obtained the optimal locations and stiffness of engine mounts from simulation results, and had reasonable results from considering flexible body mode than only rigid body mode analysis.

  • PDF

A Study on Determination of Complex Stiffness of Frame Bush for Ride-Vibration Improvement of Body-on-Frame Vehicle (프레임 차량의 주행진동 저감을 위한 프레임 부시 복소 동강성 결정에 관한 연구)

  • Jeong, Myeon-Gyu;Kim, Ki-Sun;Kim, Kwang-Joon;Hwang, In-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.194-199
    • /
    • 2005
  • Body-on-frame type vehicle has a set of frame bushes which are installed between body and frame fur vibration Isolation. Such frame bushes are important vibration transmission paths to passenger space. In order to reduce the vibration level of passenger space, therefore, the change of complex stiffness of the frame bushes is more efficient than modification of other parts of the vehicle such as body, frame and suspension. The purpose of this study is to reduce the vibration level for ride comfort by optimization of complex stiffness of frame bushes. In order to do this end, simple finite element vehicle model was constructed and the complex stiffness of frame bushes was set to be design variable. Objective function was defined to reflect passenger ride comfort and genetic algorithm and sub-structure synthesis were applied for minimization of the objective function.

  • PDF

Development of an Efficient Vehicle Dynamics Model Using Massless Link of a Suspension (현가장치 무질량 링크를 이용한 효율적인 차량동역학 모델 개발)

  • Jung Hongkyu;Kim Sangsup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.99-108
    • /
    • 2005
  • This paper represents an efficient modeling method of a suspension system for the vehicle dynamic simulation. The suspension links are modeled as composite joints. The motion of wheel is defined as relative one degree of freedom motion with respect to car body. The unique relative kinematic constraint formulation between the car body and wheel enables to derive equations of motion in terms of wheel vertical motion. Thus, vehicle model has ten degrees of freedom. By using velocity transformation method, the equations of motion of the vehicle is systematically derived without kinematic constraints. Various vehicle simulation such as J-turn, slowly increasing steer, sinusoidal sweep steer and bump run has been performed to verify the validity of the suggested vehicle model.

Three-Dimensional Dynamic Model of Full Vehicle (전차량의 3차원 동역학 모델)

  • Min, Kyung-Deuk;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.162-172
    • /
    • 2014
  • A three-dimensional dynamic model for simulating various motions of full vehicle is presented. The model has 16 independent degrees of freedom (DOF) consisting of three kinds of components; a vehicle body of 6 DOF, 4 independent suspensions equipped at every corner of the body, and 4 tire models linked with each suspension. The dynamic equations are represented in six coordinate frames such as world fixed coordinate, vehicle fixed coordinate, and four wheel fixed coordinate frames. Then these lead to the approximated prediction model of vehicle posture. Both lateral and longitudinal dynamics can be computed simultaneously under the conditions of which various inputs including steering command, driving torque, gravity, rolling resistance of tire, aerodynamic resistance, etc. are considered. It is shown through simulations that the proposed 3D model can be useful for precise design and performance analysis of any full vehicle control systems.

Reduction of Structure-borne Idle Noise with the Insertion of a Composite Body inside Vehicle Body Skeleton (차체골격내 복합체 삽입을 이용한 구조기인 아이들 소음저감)

  • Kim, Hyo-Sig;Kim, Joong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.335-343
    • /
    • 2012
  • As a matter of fact, it has been not allowed to modify the shape of a vehicle body skeleton since the technical definition for the structure was fixed and the corresponding molds were developed. By the way, if it is available to apply an alternative to reinforce the skeleton without changing its mold, it must be much flexible to improve the performance qualities relevant to not only NVH(noise, vibration and harshness) but also crash and durability. Recently, a solution of so-called composite body becomes available for the need. We present a design method to insert the composite body inside a vehicle body skeleton in order to improve a structure-borne noise at the idle condition. The algorithms, topology optimization and design sensitivity analysis, are applied to mainly search the sensitive structural sections in the body skeleton and to extract the target stiffness of the sections. Inserting the composite bodies into the sensitive portions, it is predicted to achieve the countermeasures which can compromize the design availability in terms of the idle noise and weight. According to the validation result with test vehicles, the concerned noise transfer function is reduced and the idle booming noise is resultantly improved.