• Title/Summary/Keyword: vehicle body

Search Result 1,312, Processing Time 0.024 seconds

Improvement based on Jansen mechanism in moving vehicles and exploration equipment sector. (이동차량 및 탐사용 장비 분야에서 Jansen 메커니즘을 통하여 정숙성/굴곡지 형 이동성능 개선에 관한 연구)

  • Park, Minjae
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.516-517
    • /
    • 2016
  • I use Jansen mechanism to reduce the unnecessary motion of car body and improve the motion performance capability in the rugged terrain To reduce the unnecessary motion, the positional variation of a main body of vehicle should be minimized. In order to reduce the change of height and control the speed at every moment when vehicle move, 16 legs or more are installed on a crankshaft and the paths of leg motions need to be considered in the rugged terrain. The vehicle will be optimized so that it produces a sufficient speed and torque for practical use. Finally, I designed proper body with Edison simulation. The simulation is good for beginners of mechanism design.

  • PDF

The Numerical Assessment with Modified Vehicle Rear Body Shape on the Aerodynamic Crosswind Stability Improvement (차량 후미부 형상 변경에 따른 공력 횡풍 안정성 개선에 관한 수치해석 연구)

  • Choi, Sang-Yeol;Kim, Yonung-Tae;Chang, Youn-Hyuck;Ha, Jong-Paek;Kim, Eun-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.51-53
    • /
    • 2008
  • The vehicle aerodynamic crosswind characteristics are mainly governed by the coefficient of side force and yawing moment. These performances affect not only the driving comfort which can be felt by driver but also the safety due to the instability of vehicle. The aims of this investigation are to improve the aerodynamic crosswind performance of sedan vehicle under the crosswind conditions. In order to improve the crosswind stability, numerical analysis has been performed by modifying the rear body shape of vehicle. As the results, we observed about 20% reduction of yawing moment coefficient relative to the base vehicle.

  • PDF

Study for Real-World Accident Database and Occupant Behavior Analysis in Far-Side Collisions (Far-Side 실사고 분석과 승객거동해석 연구)

  • Jaeho, Shin;Chang Min, Baek
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.77-83
    • /
    • 2022
  • Occupant behaviors and body contact with vehicle interior parts are main injury mechanism in far-side collisions. In vehicle side impact accident where the crash accident occurs on the opposite side of the vehicle from the a particular occupant, it is exposed in terms of relatively larger lateral motion to interact with the opposite side of the vehicle structure. The challenge of minimizing motions of upper body and injury risk according to a direct contact is a primary occupant protection research. This study has performed a data analysis of real-world accident database extracted from the 2016~2020 CISS database and a parametric investigation of impact angles and occupant kinematics in far-side lateral and oblique impact simulations. A detailed data analysis was conducted to reveal the relationship among the accident and injury data. Database analysis and computational far-side impact results proposed the fundamental vehicle design for safety improvement in far-side collisions.

A Study on Stability Estimation of a Orchard Vehicle using Multi-Body Dynamic and Finite Element Analysis (다물체 동역학 및 유한요소 해석을 통한 과수원용 작업차량 안정성 평가에 관한 연구)

  • Han, Chang-Woo;Son, Jae-Hwan;Park, Kee-Jin;Jang, Eun-Sil;Woo, Seung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4142-4148
    • /
    • 2013
  • Because of effective fruit growing and management in the slope land, the use of orchard vehicle with lifting utilities has been increased. For this reason the study on the stability of that vehicle for worker's safety is needed. This study is investigated on the stability estimation of orchard vehicle with four wheels and dual rectangular-type lifting utilities which can be moved on the dirt sloping load. Through the multi-body dynamics analysis on the vehicle mechanism, overturning angles of 19.2 and $34.6^{\circ}$ in the right-left and front-rear direction can be calculated. It is determined tractive resistances and required powers of the wheels. And through the finite element analysis on the frame of lifting utility its maximum von-Mises stress is 146 MPa and it is structural stable. Therefore it is known that the orchard vehicle with wheels and lifting utilities has static and dynamic stability.

INFLUENCE OF PROVIDING BODY SENSORY INFORMATION AND VISUAL INFORMATION TO DRIVER ON STEER CHARACTERISTICS AND AMOUNT OF PERSPIRATION IN DRIFT CORNERING

  • NOZAKI H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • Driving simulations were performed to evaluate the effect of providing both visual information and body sensory information on changes in steering characteristics and the amount of perspiration in drift cornering. When the driver is provided with body sensory information and visual information, the amount of perspiration increases and the driver can perform drift control with a moderate level of tension. With visual information only, the driver tends to easily go into a spin because drift control is difficult. In this case, the amount of perspiration increases greatly as compared with the case where body sensory information is also provided, reflecting a very high perception of risk. When body sensory information is provided, the driver can control drift adequately, feeding back the roll angle information in steering. The importance of the driver's perception of the state of the vehicle was thus confirmed, and a desirable future direction for driver assistance systems was determined.

Analysis and Evaluation of Body Vibration Characteristics for Korean High Speed Train through On-line Test (시운전 시험을 통한 한국형 고속전철 차체진동 특성의 분석 및 평가)

  • 김영국;김석원;박찬경;김기환;목진용
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.286-293
    • /
    • 2003
  • The prototype of Korean high speed train (HSR350), composed of two power cars, two motorized cars and three trailer cars, has been designed, fabricated and tested. In this paper, the body vibration has been reviewed from the viewpoint of the vehicle's safety and the vibration limits for components and sub-assemblies mounted on the car-body using by the experimental method. And, the dynamic characteristics, such as jerk, natural mode and kinematic mode, have been reviewed. The KHST has been run to 300 km/h in the KTX line and the results of on-line test show that it has no problems in the vehicle's safety and the vibration limits. And the characteristics of body vibrations has been predicted at 350 km/h by fitting curve about the measured acceleration signals.

Analyzing Materials Property using Optical Sensing Technique of Stabilizer Link for Automobile Parts (수송기계용 Stabilizer Link의 광센서를 이용한 부품성능평가)

  • Nam, K.W.;Woo, Y.M.;Oh, J.H.;Moon, C.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.47-53
    • /
    • 2010
  • A stabilizer link connects the stabilizer bar to the lower arm of the suspension. When a vehicle is turning, lateral forces from the tire are transmitted through the stabilizer link into the stabilizer bar. The stabilizer bar will twist, thus adding rigidity to the vehicle body. In this study, the stabilizer link body was manufactured by using composite material with POM-GF25%. Therefore, the strength evaluation of stability link body with composite material carried out from tensile, wear and fatigue test. The tensile strength between the stability link body with composite material and the rod with knurling was the largest of four types of rod. In Analyzing materials property using optical sensing technique of stabilizer link for automobile parts, its has been identified the safety.

A Study on the Characteristics of Elastomers for Vibration Isolation of Sports Utility Vehicle (스포츠 레저용 차량의 진동절연을 위한 고무제품의 특성에 관한 연구)

  • 사종성;김찬묵
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.671-675
    • /
    • 2001
  • Elastomers, which are engine mounts and body mounting rubbers, are traditionally designed for NVH use in vehicles, and they are designed to isolate specific unwanted frequencies. According to the measurement of the characteristics of engine mounts and body mounting rubbers, dynamic stiffness changes with respect to the driving miles accumulated in engine mounts and initial load in body mounting. This study looks at the variability in same engine mount properties, and the desired dynamic stiffness may increased with driving miles accumulated. And the dynamic stiffness of body mounting rubber changes very stiff above 150Hz.

  • PDF