• Title/Summary/Keyword: vector variational inequalities

Search Result 29, Processing Time 0.022 seconds

AN EXTENSION OF GENERALIZED VECTOR QUASI-VARIATIONAL INEQUALITY

  • Kum Sang-Ho;Kim Won-Kyu
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.273-285
    • /
    • 2006
  • In this paper, we shall give an affirmative answer to the question raised by Kim and Tan [1] dealing with generalized vector quasi-variational inequalities which generalize many existence results on (VVI) and (GVQVI) in the literature. Using the maximal element theorem, we derive two theorems on the existence of weak solutions of (GVQVI), one theorem on the existence of strong solution of (GVQVI), and one theorem on strong solution in the 1-dimensional case.

A NOTE ON THE GENERALIZED VARIATIONAL INEQUALITY WITH OPERATOR SOLUTIONS

  • Kum, Sangho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.319-324
    • /
    • 2009
  • In a series of papers [3, 4, 5], the author developed the generalized vector variational inequality with operator solutions (in short, GOVVI) by exploiting variational inequalities with operator solutions (in short, OVVI) due to Domokos and $Kolumb\acute{a}n$ [2]. In this note, we give an extension of the previous work [4] in the setting of Hausdorff locally convex spaces. To be more specific, we present an existence of solutions of (GVVI) under the weak pseudomonotonicity introduced in Yu and Yao [7] within the framework of (GOVVI).

  • PDF

ON THE EXISTENCE OF SOLUTIONS OF EXTENDED GENERALIZED VARIATIONAL INEQUALITIES IN BANACH SPACES

  • He, Xin-Feng;Wang, Xian;He, Zhen
    • East Asian mathematical journal
    • /
    • v.25 no.4
    • /
    • pp.527-532
    • /
    • 2009
  • In this paper, we study the following extended generalized variational inequality problem, introduced by Noor (for short, EGVI) : Given a closed convex subset K in q-uniformly smooth Banach space B, three nonlinear mappings T : $K\;{\rightarrow}\;B^*$, g : $K\;{\rightarrow}\;K$, h : $K\;{\rightarrow}\;K$ and a vector ${\xi}\;{\in}\;B^*$, find $x\;{\in}\;K$, $h(x)\;{\in}\;K$ such that $\xi$, g(y)-h(x)> $\geq$ 0, for all $y\;{\in}\;K$, $g(y)\;{\in}\;K$. [see [2]: M. Aslam Noor, Extended general variational inequalities, Appl. Math. Lett. 22 (2009) 182-186.] By using sunny nonexpansive retraction $Q_K$ and the well-known Banach's fixed point principle, we prove existence results for solutions of (EGVI). Our results extend some recent results from the literature.

NEW GENERALIZED MINTY'S LEMMA

  • Kim, Seung-Hyun;Lee, Byung-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.819-827
    • /
    • 2009
  • In this paper, we introduce new pseudomonotonicity and proper quasimonotonicity with respect to a given function, and show some existence results for strong implicit vector variational inequalities by considering new generalized Minty's lemma. Our results generalize and extend some results in [1].

  • PDF

NONLINEAR VARIATIONAL INEQUALITIES AND FIXED POINT THEOREMS

  • Park, Sehie;Kim, Ilhyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.139-149
    • /
    • 1989
  • pp.Hartman and G. Stampacchia [6] proved the following theorem in 1966: If f:X.rarw. $R^{n}$ is a continuous map on a compact convex subset X of $R^{n}$ , then there exists $x_{0}$ ..mem.X such that $x_{0}$ , $x_{0}$ -x>.geq.0 for all x.mem.X. This remarkable result has been investigated and generalized by F.E. Browder [1], [2], W. Takahashi [9], S. Park [8] and others. For example, Browder extended this theorem to a map f defined on a compact convex subser X of a topological vector space E into the dual space $E^{*}$; see [2, Theorem 2]. And Takahashi extended Browder's theorem to closed convex sets in topological vector space; see [9, Theorem 3]. In Section 2, we obtain some variational inequalities, especially, generalizations of Browder's and Takahashi's theorems. The generalization of Browder's is an earlier result of the first author [8]. In Section 3, using Theorem 1, we improve and extend some known fixed pint theorems. Theorems 4 and 8 improve Takahashi's results [9, Theorems 5 and 9], respectively. Theorem 4 extends the first author's fixed point theorem [8, Theorem 8] (Theorem 5 in this paper) which is a generalization of Browder [1, Theroem 1]. Theorem 8 extends Theorem 9 which is a generalization of Browder [2, Theorem 3]. Finally, in Section 4, we obtain variational inequalities for multivalued maps by using Theorem 1. We improve Takahashi's results [9, Theorems 21 and 22] which are generalization of Browder [2, Theorem 6] and the Kakutani fixed point theorem [7], respectively.ani fixed point theorem [7], respectively.

  • PDF

AN EXTENSION OF MULTI-VALUED QUASI-GENERALIZED SYSTEM

  • Kum, Sangho;Kim, Won Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.703-709
    • /
    • 2012
  • Recently, Kazmi and Khan [7] introduced a kind of equilibrium problem called generalized system (GS) with a single-valued bi-operator F. Next, in [10], the first author considered a generalization of (GS) into a multi-valued circumstance called the multi-valued quasi-generalized system (in short, MQGS). In the current work, we provide an extension of (MQGS) into a system of (MQGS) in general settings. This system is called the generalized multi-valued quasi-generalized system (in short, GMQGS). Using the existence theorem for abstract economy by Kim [8], we prove the existence of solutions for (GMQGS) in the framework of Hausdorff topological vector spaces. As an application, an existence result of a system of generalized vector quasi-variational inequalities is derived.

Some existence theorems for generalized vector variational inequalities

  • Lee, Gue-Myung;Kim, Do-Sang;Lee, Byung-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.343-348
    • /
    • 1995
  • Let X and Y be two normed spaces and D a nonempty convex subset of X. Let $T : X \ to L(X,Y)$ be a mapping, where L(X,Y) is the space of all continuous linear mappings from X into Y. And let $C : D \to 2^Y$ be a set-valued map such that for each $x \in D$, C(x) is a convex cone in Y such that Int $C(x) \neq 0 and C(x) \neq Y$, where Int denotes the interior.

  • PDF