• Title/Summary/Keyword: vector programming

Search Result 139, Processing Time 0.025 seconds

Improvement of rotor flux estimation performance of induction motor using Support Vector Machine $\epsilon$-insensitive Regression Method (Support Vector Machine $\epsilon$-insensitive Regression방법을 이용한 유도전동기의 회전자 자속추정 성능개선)

  • Han, Dong-Chang;Baek, Un-Jae;Kim, Seong-Rak;Park, Ju-Hyeon;Lee, Seok-Gyu;Park, Jeong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.43-46
    • /
    • 2003
  • In this paper, a novel rotor flux estimation method of an induction motor using support vector machine(SVM) is presented. Two veil-known different flux models with respect to voltage and current are necessary to estimate the rotor flux of an induction motor. The theory of the SVM algorithm is based on statistical teaming theory. Training of SVH leads to a quadratic programming(QP) problem. The proposed SVM rotor flux estimator guarantees the improvement of performance in the transient and steady state in spite of parameter variation circumstance. The validity and the usefulness of Proposed algorithm are throughly verified through numerical simulation.

  • PDF

Rotor flux Observer Using Robust Support Vector Regression for Field Oriented Induction Mmotor Drives (유도전동기 벡터제어를 위한 Support Vector Regression을 이용한 회전자자속 추정기)

  • Han Dong Chang;Back Woon Jae;Kim Sung Rag;Kim Han Kil;Lee Suk Gyu;Park Jung IL
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.70-78
    • /
    • 2005
  • In this paper, a novel rotor flux estimation method of an induction motor using support vector regression(SVR) is presented. Two well-known different flux models with respect to voltage and current are necessary to estimate the rotor flux of an induction motor. Training of SVR which the theory of the SVR algorithm leads to a quadratic programming(QP) problem. The proposed SVR rotor flux estimator guarantees the improvement of performance in the transient and steady state in spite of parameter variation circumstance. The validity and the usefulness of proposed algorithm are throughly verified through numerical simulation.

Development of a Simulink/RTW-Based Realtime Control System for an Induction Motor Vector Control (유도전동기 벡터제어를 위한 Simulink/RTW 기반 실시간 제어시스템 개발)

  • Kang, Moon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.136-142
    • /
    • 2001
  • In this research a Simulink/RTW-baed realtime control system was developed for an induction motor vector control. On the Simulink window, the control system is designed in the form of block diagrams, program codes are produced automatically with the RTW(Real Time Workshop), then an DSP c compiler compiles the program codes. With this automatic program producing method rapid prototyping is realized with the least time-consuming manual programming procedures. To show effectiveness of the proposed system designing scheme a DSP-based induction motor vector controller was constructed and implemented.

  • PDF

Development of a Post-Processing Program for Flow Analysis Based on the Object-Oriented Programming Concept (OOP 개념에 기초한 유동해석용 후처리 프로그램 개발)

  • Myong, Hyon-Kook;Ahn, Jong-Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • A post-processing program based on the OOP(Object-Oriented Programming) concept has been developed for flow visualization of the flow analysis code(PowerCFD) using unstructured cell-centered method. User-friendly GUI(GTaphic User Interface) has been built on the base of MFC(Microsoft Foundation Class). The program is organized as modules by classes including those based on VTK(Visualization ToolKit)-library, and these classes are made to function through inheritance and cooperation which is an important and valuable OOP concept. The major functions of this post-processor program are introduced and demonstrated, which include mesh plot, contour plot, vector plot, surface plots, cut plot, clip plot, xy-plot and streamline plot as well as view manipulation (translation, rotation, scaling etc).

Speed Sensorless Torque Monitoring of Induction Spindle Motor using Graphical Programming (그래픽 프로그래밍 기법을 이용한 주축용 유도전동기의 속도 센서리스 토크감시)

  • Park, Jin-U;Gwon, Won-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.107-113
    • /
    • 2002
  • To monitor the torque of an induction motor using current, rotating speed has been measured and used to calculate the slip angular velocity. Additional sensor, however, can cause extra expense and trouble. In this paper, a new algorithm is proposed to monitor the torque of vector controlled induction motor without any speed measuring sensor. Only stator current is measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. Graphical programming is used to implement the suggested algorithm and to monitor the torque of an induction motor in real time. To solve the fluctuation problem of estimated torque caused from instantly varying rotating speed of an induction motor, the rotating speed is reconstructed based on the measured current signals. From several experiments, the proposed method shows a good estimation of the motor torque under the normal rotational speed.

On visualization of solutions of the linear Programming (선형계획법의 해의 이동에 관한 시각화)

  • 이상욱;임성묵;박순달
    • Korean Management Science Review
    • /
    • v.19 no.1
    • /
    • pp.67-75
    • /
    • 2002
  • This paper deals with the visualization method of solutions of the linear programming Problem. We used the revised simplex method for the LP algorithm. To represent the solutions at each iteration, we need the informations of feasible legion and animated effect of solutions. For the visualization in high dimension space, we used the method of Projection to the three dimensions if the decision variable vector is over three dimensions, and we studied the technique of preserving original Polyhedral information such as the number of vertices. In addtion, we studied the method of visualizing unbounded feasible region and the adjacency relationship of the vortices welch is Indispensable to cisualize feasible legion.

Spline parameterization based nonlinear trajectory optimization along 4D waypoints

  • Ahmed, Kawser;Bousson, Kouamana;Coelho, Milca de Freitas
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.391-407
    • /
    • 2019
  • Flight trajectory optimization has become an important factor not only to reduce the operational costs (e.g.,, fuel and time related costs) of the airliners but also to reduce the environmental impact (e.g.,, emissions, contrails and noise etc.) caused by the airliners. So far, these factors have been dealt with in the context of 2D and 3D trajectory optimization, which are no longer efficient. Presently, the 4D trajectory optimization is required in order to cope with the current air traffic management (ATM). This study deals with a cubic spline approximation method for solving 4D trajectory optimization problem (TOP). The state vector, its time derivative and control vector are parameterized using cubic spline interpolation (CSI). Consequently, the objective function and constraints are expressed as functions of the value of state and control at the temporal nodes, this representation transforms the TOP into nonlinear programming problem (NLP). The proposed method is successfully applied to the generation of a minimum length optimal trajectories along 4D waypoints, where the method generated smooth 4D optimal trajectories with very accurate results.

A Voice Controlled Service Robot Using Support Vector Machine

  • Kim, Seong-Rock;Park, Jae-Suk;Park, Ju-Hyun;Lee, Suk-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1413-1415
    • /
    • 2004
  • This paper proposes a SVM(Support Vector Machine) training algorithm to control a service robot with voice command. The service robot with a stereo vision system and dual manipulators of four degrees of freedom implements a User-Dependent Voice Control System. The training of SVM algorithm that is one of the statistical learning theories leads to a QP(quadratic programming) problem. In this paper, we present an efficient SVM speech recognition scheme especially based on less learning data comparing with conventional approaches. SVM discriminator decides rejection or acceptance of user's extracted voice features by the MFCC(Mel Frequency Cepstrum Coefficient). Among several SVM kernels, the exponential RBF function gives the best classification and the accurate user recognition. The numerical simulation and the experiment verified the usefulness of the proposed algorithm.

  • PDF

Kernel Adatron Algorithm of Support Vector Machine for Function Approximation (함수근사를 위한 서포트 벡터 기계의 커널 애더트론 알고리즘)

  • Seok, Kyung-Ha;Hwang, Chang-Ha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1867-1873
    • /
    • 2000
  • Function approximation from a set of input-output pairs has numerous applications in scientific and engineering areas. Support vector machine (SVM) is a new and very promising classification, regression and function approximation technique developed by Vapnik and his group at AT&TG Bell Laboratories. However, it has failed to establish itself as common machine learning tool. This is partly due to the fact that this is not easy to implement, and its standard implementation requires the use of optimization package for quadratic programming (QP). In this appear we present simple iterative Kernel Adatron (KA) algorithm for function approximation and compare it with standard SVM algorithm using QP.

  • PDF

Semiparametric support vector machine for accelerated failure time model

  • Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.765-775
    • /
    • 2010
  • For the accelerated failure time (AFT) model a lot of effort has been devoted to develop effective estimation methods. AFT model assumes a linear relationship between the logarithm of event time and covariates. In this paper we propose a semiparametric support vector machine to consider situations where the functional form of the effect of one or more covariates is unknown. The proposed estimating equation can be computed by a quadratic programming and a linear equation. We study the effect of several covariates on a censored response variable with an unknown probability distribution. We also provide a generalized approximate cross-validation method for choosing the hyper-parameters which affect the performance of the proposed approach. The proposed method is evaluated through simulations using the artificial example.