• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.03 seconds

Pattern Classification Model using LVQ Optimized by Fuzzy Membership Function (퍼지 멤버쉽 함수로 최적화된 LVQ를 이용한 패턴 분류 모델)

  • Kim, Do-Tlyeon;Kang, Min-Kyeong;Cha, Eui-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.8
    • /
    • pp.573-583
    • /
    • 2002
  • Pattern recognition process is made up of the feature extraction in the pre-processing, the pattern clustering by training and the recognition process. This paper presents the F-LVQ (Fuzzy Learning Vector Quantization) pattern classification model which is optimized by the fuzzy membership function for the OCR(Optical Character Recognition) system. We trained 220 numeric patterns of 22 Hangul and English fonts and tested 4840 patterns whose forms are changed variously. As a result of this experiment, it is proved that the proposed model is more effective and robust than other typical LVQ models.

MRAS Based Speed Estimator for Sensorless Vector Control of a Linear Induction Motor with Improved Adaptation Mechanisms

  • Holakooie, Mohammad Hosein;Taheri, Asghar;Sharifian, Mohammad Bagher Bannae
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1274-1285
    • /
    • 2015
  • This paper deals with model reference adaptive system (MRAS) speed estimators based on a secondary flux for linear induction motors (LIMs). The operation of these estimators significantly depends on an adaptation mechanism. Fixed-gain PI controller is the most common adaptation mechanism that may fail to estimate the speed correctly in different conditions, such as variation in machine parameters and noisy environment. Two adaptation mechanisms are proposed to improve LIM drive system performance, particularly at very low speed. The first adaptation mechanism is based on fuzzy theory, and the second is obtained from an LIM mechanical model. Compared with a conventional PI controller, the proposed adaptation mechanisms have low sensitivity to both variations of machine parameters and noise. The optimum parameters of adaptation mechanisms are tuned using an offline method through chaotic optimization algorithm (COA) because no design criterion is given to provide these values. The efficiency of MRAS speed estimator is validated by both numerical simulation and real-time hardware-in-the-loop (HIL) implementations. Results indicate that the proposed adaptation mechanisms improve performance of MRAS speed estimator.

Segmentation of Bacterial Cells Based on a Hybrid Feature Generation and Deep Learning (하이브리드 피처 생성 및 딥 러닝 기반 박테리아 세포의 세분화)

  • Lim, Seon-Ja;Vununu, Caleb;Kwon, Ki-Ryong;Youn, Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.965-976
    • /
    • 2020
  • We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels' internal dependencies and the cells' shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask. Finally, the classifier's outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing.

Acceleration of Mesh Denoising Using GPU Parallel Processing (GPU의 병렬 처리 기능을 이용한 메쉬 평탄화 가속 방법)

  • Lee, Sang-Gil;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.9 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • Mesh denoising is a method to remove noise applying various filters. However, those methods usually spend much time since filtering is performed on CPU. Because GPU is specialized for floating point operations and faster than CPU, real-time processing for complex operations is possible. Especially mesh denoising is adequate for GPU parallel processing since it repeats the same operations for vertices or triangles. In this paper, we propose mesh denoising algorithm based on bilateral filtering using GPU parallel processing to reduce processing time. It finds neighbor triangles of each vertex for applying bilateral filter, and computes its normal vector. Then it performs bilateral filtering to estimate new vertex position and to update its normal vector.

  • PDF

A TRUS Prostate Segmentation using Gabor Texture Features and Snake-like Contour

  • Kim, Sung Gyun;Seo, Yeong Geon
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.103-116
    • /
    • 2013
  • Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation in TRUS images using Gabor feature extraction and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. The speckle reduction for preprocessing step has been achieved by using stick filter and top-hat transform has been implemented for smoothing the contour. A Gabor filter bank for extraction of rotation-invariant texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. Finally, the boundary of prostate is extracted by the snake-like contour algorithm. A number of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with less than 10.2% of the accuracy which is relative to boundary provided manually by experts.

On Statistical Estimation of Multivariate (Vector-valued) Process Capability Indices with Bootstraps)

  • Cho, Joong-Jae;Park, Byoung-Sun;Lim, Soo-Duck
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.697-709
    • /
    • 2001
  • In this paper we study two vector-valued process capability indices $C_{p}$=($C_{px}$, $C_{py}$ ) and C/aub pm/=( $C_{pmx}$, $C_{pmy}$) considering process capability indices $C_{p}$ and $C_{pm}$ . First, two asymptotic distributions of plug-in estimators $C_{p}$=($C_{px}$, $C_{py}$ ) and $C_{pm}$ =) $C_{pmx}$, $C_{pmy}$) are derived.. With the asymptotic distributions, we propose asymptotic confidence regions for our indices. Next, obtaining the asymptotic distributions of two bootstrap estimators $C_{p}$=($C_{px}$, $C_{py}$ )and $C_{pm}$ =( $C_{pmx}$, $C_{pmy}$) with our bootstrap algorithm, we will provide the consistency of our bootstrap for statistical inference. Also, with the consistency of our bootstrap, we propose bootstrap asymptotic confidence regions for our indices. (no abstract, see full-text)see full-text)e full-text)

  • PDF

Linear SVM-Based Android Malware Detection and Feature Selection for Performance Improvement (선형 SVM을 사용한 안드로이드 기반의 악성코드 탐지 및 성능 향상을 위한 Feature 선정)

  • Kim, Ki-Hyun;Choi, Mi-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.8
    • /
    • pp.738-745
    • /
    • 2014
  • Recently, mobile users continuously increase, and mobile applications also increase As mobile applications increase, the mobile users used to store sensitive and private information such as Bank information, location information, ID, password on their mobile devices. Therefore, recent malicious application targeted to mobile device instead of PC environment is increasing. In particular, since the Android is an open platform and includes security vulnerabilities, attackers prefer this environment. This paper analyzes the performance of malware detection system applying linear SVM machine learning classifier to detect Android malware application. This paper also performs feature selection in order to improve detection performance.

Forced Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 격자형 구조물의 강제진동 해석)

  • 문덕홍;최명수
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.949-956
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful method for structural analysis lately. However, it is necessary to use a large amount of computer memory and computational time because the FEM requires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For analyzing these structures on a personal computer, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient matrix which is related to force and displacement vector at each node. And we suggested TSCM for free vibration analysis of complex and large lattice type structures in the previous report. In this paper, we formulate forced vibration analysis algorithm for complex and large lattice type structures using extened TSCM. And we confirmed the validity of TSCM through computational results by the FEM and TSCM, and experimental results for lattice type structures with harmonic excitation.

  • PDF

Automated Analysis Approach for the Detection of High Survivable Ransomware

  • Ahmed, Yahye Abukar;Kocer, Baris;Al-rimy, Bander Ali Saleh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2236-2257
    • /
    • 2020
  • Ransomware is malicious software that encrypts the user-related files and data and holds them to ransom. Such attacks have become one of the serious threats to cyberspace. The avoidance techniques that ransomware employs such as obfuscation and/or packing makes it difficult to analyze such programs statically. Although many ransomware detection studies have been conducted, they are limited to a small portion of the attack's characteristics. To this end, this paper proposed a framework for the behavioral-based dynamic analysis of high survivable ransomware (HSR) with integrated valuable feature sets. Term Frequency-Inverse document frequency (TF-IDF) was employed to select the most useful features from the analyzed samples. Support Vector Machine (SVM) and Artificial Neural Network (ANN) were utilized to develop and implement a machine learning-based detection model able to recognize certain behavioral traits of high survivable ransomware attacks. Experimental evaluation indicates that the proposed framework achieved an area under the ROC curve of 0.987 and a few false positive rates 0.007. The experimental results indicate that the proposed framework can detect high survivable ransomware in the early stage accurately.

A Output Voltage Linearization in Overmodulation Region of the Space Vector PWM (공간벡터 PWM의 과변조 영역에서 출력전압 선형화)

  • Bae, Jang-Ho;Kim, Yuen-Chung;Won, Chung-Yuen;Choi, Jong-Mook;Gi, Sang-Woo;Bae, Gi-Hun
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.128-139
    • /
    • 1999
  • This paper proposes a linearization technique for the space vector modulation method, which increases the linear control range of inverter up to the 6-step inverter. This method is based on fourier series expansion of the desired output voltage of the inverter to calculate the compensation angle in continuous switching mode and holding angle in discontinuous switching including the 6-step mode respectively. The approximation equation of these angles are used for compensation of fundamental voltage in overmodulation range. Therefore, it is possible to obtain the linear control and the maximized utilization of PWM inverter output voltage.

  • PDF