References
- Cancer Facts and Figures. American Cancer Society. http://www.cancer.org
- Mettlin C: American society national cancer detection project. Cancer 1995, 75:1790-1794. https://doi.org/10.1002/1097-0142(19950401)75:7+<1790::AID-CNCR2820751607>3.0.CO;2-Z
- http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/cancer-facts-figures-2011.
- A. Chakraborty, L. H. Staib, and J. S. Duncan, "Deformable boundary finding in medical images by integrating gradient and region information," IEEE Trans. Med. Imag., Vol.15, No.6, December, 1996, pp.859-870. https://doi.org/10.1109/42.544503
- P. D. Grimm, J. C. Balsko, and H. Ragde, "Ultrasound guided transperineal implantation of iodine 125 and palladium 103 for the treatment of early stage prostate cancer," Atlas Urol. Clin. No.Amer., Vol.2, 1994, pp.113-125.
- Y. Zhan and D. Shen , "Deformable Segmentation of 3-D Ultrasound Prostate Images Using Statistical Texture Matching Method", IEEE Trans. on Medical Imaging, Vol.25, March, 2006, pp.245-255. https://doi.org/10.1109/TMI.2005.862743
- A. Rafiee, A. Salimi, and A. Roostam, "A Novel Prostate Segmentation Algorithm in TRUS Images", World Academy of Science, Engineering and Technology 45, 2008, pp.120-124.
- S. D. Pathak, V. Chalana, D. R. Haynor, and Y. Kim, "Edge-guided boundary delineation in prostate ultrasound images", IEEE Trans. Med. Imag., Vol.19, No.12, December, 2000, pp.1211-1219. https://doi.org/10.1109/42.897813
- D. Shen, Y. Zhan, and C. Davatzikos, "Segmentation prostate boundaries from ultrasound images using statistical shape model," IEEE Trans. Med. Imag., Vol.22, No.4, April, 2003, pp.539-551. https://doi.org/10.1109/TMI.2003.809057
- F. Shao, K. V. Ling, and W. S. Ng, "3-D prostate surface detection from ultrasound images based on level set method," in Proc. MICCAI 2003, 2003, pp.389-396.
- P. Yan, S. Xu, B. Turkbey and J. Kruecker, "Adaptively Learning Local Shape Statistics for Prostate Segmentation in US", IEEE Trans. On Biomedical Eng., Vol.58, No.3, March, 2011, pp.633-641. https://doi.org/10.1109/TBME.2010.2094195
- H. Akbari, X. Yang, L. Halig and B. Fei, "3D segmentation of Prostate Ultrasound images Using Wavelet Transform", Proc. of SPIE 7962, 2011.
- B. E. Boser, I. M. Guyon and V. N. Vapnik."A training algorithm for optimal margin classifiers", In D. Haussler, editor, 5th Annual ACM Workshop on COLT, 1992, pp.144-152.
- J. Suri and A. Farag, "Deformable Models 2", Springer, 2007, pp.75-94.
- A. Ghanei, H. S. Zadeh, A. Ratkesicz, and F. Yin, "A three-dimensional deformable model for segmentation of human prostate from ultrasound image," Med. Phys., Vol.28, 2001, pp.2147-2153. https://doi.org/10.1118/1.1388221
Cited by
- Detecting the Prostate Boundary with Gabor Texture Features Average Shape Model of TRUS Prostate Image vol.16, pp.5, 2015, https://doi.org/10.9728/dcs.2015.16.5.717
- Automatic lung segmentation for large-scale medical image management vol.75, pp.23, 2016, https://doi.org/10.1007/s11042-014-2201-1
- Delineating the Prostate Boundary on TRUS Image Using Predicting the Texture Features and its Boundary Distribution vol.17, pp.6, 2016, https://doi.org/10.9728/dcs.2016.17.6.603
- Reliable Fault Classification of Induction Motors Using Texture Feature Extraction and a Multiclass Support Vector Machine vol.2014, 2014, https://doi.org/10.1155/2014/814593
- Segmentation of prostate from ultrasound images using level sets on active band and intensity variation across edges vol.43, pp.6Part1, 2016, https://doi.org/10.1118/1.4950721
- A survey on computational intelligence approaches for predictive modeling in prostate cancer vol.70, 2017, https://doi.org/10.1016/j.eswa.2016.11.006
- Extracting The Prostate Boundary Using Direction Features of Prostate Boundary On Ultrasound Prostate Image vol.21, pp.11, 2016, https://doi.org/10.9708/jksci.2016.21.11.103