• Title/Summary/Keyword: Prostate Segmentation

Search Result 17, Processing Time 0.027 seconds

Optimization of Multi-Atlas Segmentation with Joint Label Fusion Algorithm for Automatic Segmentation in Prostate MR Imaging

  • Choi, Yoon Ho;Kim, Jae-Hun;Kim, Chan Kyo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.3
    • /
    • pp.123-131
    • /
    • 2020
  • Purpose: Joint label fusion (JLF) is a popular multi-atlas-based segmentation algorithm, which compensates for dependent errors that may exist between atlases. However, in order to get good segmentation results, it is very important to set the several free parameters of the algorithm to optimal values. In this study, we first investigate the feasibility of a JLF algorithm for prostate segmentation in MR images, and then suggest the optimal set of parameters for the automatic prostate segmentation by validating the results of each parameter combination. Materials and Methods: We acquired T2-weighted prostate MR images from 20 normal heathy volunteers and did a series of cross validations for every set of parameters of JLF. In each case, the atlases were rigidly registered for the target image. Then, we calculated their voting weights for label fusion from each combination of JLF's parameters (rpxy, rpz, rsxy, rsz, β). We evaluated the segmentation performances by five validation metrics of the Prostate MR Image Segmentation challenge. Results: As the number of voxels participating in the voting weight calculation and the number of referenced atlases is increased, the overall segmentation performance is gradually improved. The JLF algorithm showed the best results for dice similarity coefficient, 0.8495 ± 0.0392; relative volume difference, 15.2353 ± 17.2350; absolute relative volume difference, 18.8710 ± 13.1546; 95% Hausdorff distance, 7.2366 ± 1.8502; and average boundary distance, 2.2107 ± 0.4972; in parameters of rpxy = 10, rpz = 1, rsxy = 3, rsz = 1, and β = 3. Conclusion: The evaluated results showed the feasibility of the JLF algorithm for automatic segmentation of prostate MRI. This empirical analysis of segmentation results by label fusion allows for the appropriate setting of parameters.

Medical Image Segmentation: A Comparison Between Unsupervised Clustering and Region Growing Technique for TRUS and MR Prostate Images

  • Ingale, Kiran;Shingare, Pratibha;Mahajan, Mangal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Prostate cancer is one of the most diagnosed malignancies found across the world today. American cancer society in recent research predicted that over 174,600 new prostate cancer cases found and nearly 31,620 death cases recorded. Researchers are developing modest and accurate methodologies to detect and diagnose prostate cancer. Recent work has been done in radiology to detect prostate tumors using ultrasound imaging and resonance imaging techniques. Transrectal ultrasound and Magnetic resonance images of the prostate gland help in the detection of cancer in the prostate gland. The proposed paper is based on comparison and analysis between two novel image segmentation approaches. Seed region growing and cluster based image segmentation is used to extract the region from trans-rectal ultrasound prostate and MR prostate images. The region of extraction represents the abnormality area that presents in men's prostate gland. Detection of such abnormalities in the prostate gland helps in the identification and treatment of prostate cancer

A TRUS Prostate Segmentation using Gabor Texture Features and Snake-like Contour

  • Kim, Sung Gyun;Seo, Yeong Geon
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.103-116
    • /
    • 2013
  • Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation in TRUS images using Gabor feature extraction and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. The speckle reduction for preprocessing step has been achieved by using stick filter and top-hat transform has been implemented for smoothing the contour. A Gabor filter bank for extraction of rotation-invariant texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. Finally, the boundary of prostate is extracted by the snake-like contour algorithm. A number of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with less than 10.2% of the accuracy which is relative to boundary provided manually by experts.

Extracting The Prostate Boundary Using Direction Features of Prostate Boundary On Ultrasound Prostate Image

  • Park, Jae Heung;Seo, Yeong Geon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.103-111
    • /
    • 2016
  • Traditionally, in the hospital the doctors saw the TRUS images by their eyes and manually segmented the boundary between the prostate and nonprostate. But the manually segmenting process not only needed too much time but also had different boundaries according to the doctor. To cope the problems, some automatic segmentations of the prostate have been studied to generate the constant segmentation results and get the belief from patients. Besides, on detecting the boundary, the ones in the middle of all images are easy to find the boundary but the base and apex of the images are hard to do it since there are lots of uncertain boundary. Accurate detection of prostate boundaries is a challenging and difficult task due to weak prostate boundaries, speckle noises and the short range of gray levels. In this paper, we propose the method that extracts a prostate boundary using features of its directions on prostate image. As a result of our experiments, it shows that the boundary never falls short of the existing methods or human expert's segmentation. And also, its searching speed is too fast because the method searches a smaller area that other methods.

Automatic prostate segmentation method on dynamic MR images using non-rigid registration and subtraction method (동작 MR 영상에서 비강체 정합과 감산 기법을 이용한 자동 전립선 분할 기법)

  • Lee, Jeong-Jin;Lee, Ho;Kim, Jeong-Kon;Lee, Chang-Kyung;Shin, Yeong-Gil;Lee, Yoon-Chul;Lee, Min-Sun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.348-355
    • /
    • 2011
  • In this paper, we propose an automatic prostate segmentation method from dynamic magnetic resonance (MR) images. Our method detects contrast-enhanced images among the dynamic MR images using an average intensity analysis. Then, the candidate regions of prostate are detected by the B-spline non-rigid registration and subtraction between the pre-contrast and contrast-enhanced MR images. Finally, the prostate is segmented by performing a dilation operation outward, and sequential shape propagation inward. Our method was validated by ten data sets and the results were compared with the manually segmented results. The average volumetric overlap error was 6.8%, and average absolute volumetric measurement error was 2.5%. Our method could be used for the computer-aided prostate diagnosis, which requires an accurate prostate segmentation.

A Prostate Segmentation of TRUS Image using Average Shape Model and SIFT Features (평균 형상 모델과 SIFT 특징을 이용한 TRUS 영상의 전립선 분할)

  • Kim, Sang Bok;Seo, Yeong Geon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.3
    • /
    • pp.187-194
    • /
    • 2012
  • Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease, transrectal ultrasound(TRUS) images are being used because the cost is low. But, accurate detection of prostate boundaries is a challenging and difficult task due to weak prostate boundaries, speckle noises and the short range of gray levels. This paper proposes a method for automatic prostate segmentation in TRUS images using its average shape model and invariant features. This approach consists of 4 steps. First, it detects the probe position and the two straight lines connected to the probe using edge distribution. Next, it acquires 3 prostate patches which are in the middle of average model. The patches will be used to compare the features of prostate and nonprostate. Next, it compares and classifies which blocks are similar to 3 representative patches. Last, the boundaries from prior classification and the rough boundaries from first step are used to determine the segmentation. A number of experiments are conducted to validate this method and results showed that this new approach extracted the prostate boundary with less than 7.78% relative to boundary provided manually by experts.

An Average Shape Model for Segmenting Prostate Boundary of TRUS Prostate Image (초음파 전립선 영상에서 전립선 경계 분할을 위한 평균 형상 모델)

  • Kim, Sang Bog;Chung, Joo Young;Seo, Yeong Geon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.5
    • /
    • pp.187-194
    • /
    • 2014
  • Prostate cancer is a malignant tumor occurring in the prostate. Recently, the repetition rate is increasing. Image inspection method which we can check the prostate structure the most correctly is MRI(Magnetic Resonance Imaging), but it is hard to apply it to all the patients because of the cost. So, they use mostly TRUS(Transrectal Ultrasound) images acquired from prostate ultrasound inspection and which are cheap and easy to inspect the prostate in the process of treating and diagnosing the prostate cancer. Traditionally, in the hospital the doctors saw the TRUS images by their eyes and manually segmented the boundary between the prostate and nonprostate. But the manually segmenting process not only needed too much time but also had different boundaries according to the doctor. To cope the problems, some automatic segmentations of the prostate have been studied to generate the constant segmentation results and get the belief from patients. In this study, we propose an average shape model to segment the prostate boundary in TRUS prostate image. The method has 3 steps. First, it finds the probe using edge distribution. Next, it finds two straight lines connected with the probe. Finally it puts the shape model to the image using the position of the probe and straight lines.

Detecting the Prostate Contour in TRUS Image using Support Vector Machine and Rotation-invariant Textures (SVM과 회전 불변 텍스처 특징을 이용한 TRUS 영상의 전립선 윤곽선 검출)

  • Park, Jae Heung;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.15 no.6
    • /
    • pp.675-682
    • /
    • 2014
  • Prostate is only an organ of men. To diagnose the disease of the prostate, generally transrectal ultrasound(TRUS) images are used. Detecting its boundary is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation in TRUS images using Support Vector Machine(SVM) is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. The speckle reduction for preprocessing step has been achieved by using stick filter and top-hat transform has been implemented for smoothing. Gabor filter bank for extraction of rotation-invariant texture features has been implemented. SVM for training step has been used to get each feature of prostate and nonprostate. Finally, the boundary of prostate is extracted. A number of experiments are conducted to validate this method and results shows that the proposed algorithm extracted the prostate boundary with less than 10% relative to boundary provided manually by doctors.

A ProstateSegmentationofTRUS ImageusingSupport VectorsandSnake-likeContour (서포트 벡터와 뱀형상 윤곽선을 이용한 TRUS 영상의 전립선 분할)

  • Park, Jae Heung;Se, Yeong Geon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.101-109
    • /
    • 2012
  • In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation inTRUS images using support vectors and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. Gabor filter bank for extracting the texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. The boundary of prostate is extracted by the snake-like contour algorithm. The results showed that this new algorithm extracted the prostate boundary with less than 9.3% relative to boundary provided manually by experts.

Automatic Prostate Segmentation in MR Images based on Active Shape Model Using Intensity Distribution and Gradient Information (MR 영상에서 밝기값 분포 및 기울기 정보를 이용한 활성형상모델 기반 전립선 자동 분할)

  • Jang, Yu-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.110-119
    • /
    • 2010
  • In this paper, we propose an automatic segmentation of the prostate using intensity distribution and gradient information in MR images. First, active shape model using adaptive intensity profile and multi-resolution technique is used to extract the prostate surface. Second, hole elimination using geometric information is performed to prevent the hole from occurring by converging the surface shape to the local optima. Third, the surface shape with large anatomical variation is corrected by using 2D gradient information. In this case, the corrected surface shape is often represented as rugged shape which is generated by the limited number of vertices. Thus, it is reconstructed by using surface modelling and smoothing. To evaluate our method, we performed the visual inspection, accuracy measures and processing time. For accuracy evaluation, the average distance difference and the overlapping volume ratio between automatic segmentation and manual segmentation by two radiologists are calculated. Experimental results show that the average distance difference was 0.3${\pm}$0.21mm and the overlapping volume ratio was 96.31${\pm}$2.71%. The total processing time of twenty patient data was 16 seconds on average.